mirror of
https://github.com/open-mmlab/mmocr.git
synced 2025-06-03 21:54:47 +08:00
[Feature] Add SROIE Converter (#810)
* add SROIE converter * add sroie converter * fix docstring indentation * fix lint * remove val split; add test split * delete google drive timestamp Co-authored-by: Tong Gao <gaotongxiao@gmail.com> * remove timestamp * update docs; support jsonl; fix crop * move tree structure * move tree structure * move directory tree * fix indentation Co-authored-by: Tong Gao <gaotongxiao@gmail.com>
This commit is contained in:
parent
958e4a3e87
commit
bdd32c8052
@ -59,6 +59,7 @@ The structure of the text detection dataset directory is organized as follows.
|
||||
| Totaltext | [homepage](https://github.com/cs-chan/Total-Text-Dataset) | - | - | - |
|
||||
| CurvedSynText150k | [homepage](https://github.com/aim-uofa/AdelaiDet/blob/master/datasets/README.md) \| [Part1](https://drive.google.com/file/d/1OSJ-zId2h3t_-I7g_wUkrK-VqQy153Kj/view?usp=sharing) \| [Part2](https://drive.google.com/file/d/1EzkcOlIgEp5wmEubvHb7-J5EImHExYgY/view?usp=sharing) | [instances_training.json](https://download.openmmlab.com/mmocr/data/curvedsyntext/instances_training.json) | - | - |
|
||||
| FUNSD | [homepage](https://guillaumejaume.github.io/FUNSD/) | - | - | - |
|
||||
| SROIE | [homepage](https://rrc.cvc.uab.es/?ch=13) | - | - | - |
|
||||
| Lecture Video DB | [homepage](https://cvit.iiit.ac.in/research/projects/cvit-projects/lecturevideodb) | - | - | - |
|
||||
|
||||
|
||||
@ -219,6 +220,45 @@ rm dataset.zip && rm -rf dataset
|
||||
python tools/data/textdet/funsd_converter.py PATH/TO/funsd --nproc 4
|
||||
```
|
||||
|
||||
### SROIE
|
||||
|
||||
- Step1: Download `0325updated.task1train(626p).zip`, `task1&2_test(361p).zip`, and `text.task1&2-test(361p).zip` from [homepage](https://rrc.cvc.uab.es/?ch=13&com=downloads) to `sroie/`
|
||||
|
||||
- Step2:
|
||||
|
||||
```bash
|
||||
mkdir sroie && cd sroie
|
||||
mkdir imgs && mkdir annotations && mkdir imgs/training
|
||||
|
||||
# Warnninig: The zip files downloaded from Google Drive and BaiduYun Cloud may
|
||||
# be different, the user should revise the following commands to the correct
|
||||
# file name if encounter with errors while extracting and move the files.
|
||||
unzip -q 0325updated.task1train\(626p\).zip && unzip -q task1\&2_test\(361p\).zip && unzip -q text.task1\&2-test(361p\).zip
|
||||
|
||||
# For images
|
||||
mv 0325updated.task1train\(626p\)/*.jpg imgs/training && mv fulltext_test\(361p\) imgs/test
|
||||
|
||||
# For annotations
|
||||
mv 0325updated.task1train\(626p\) annotations/training && mv text.task1\&2-testги361p\)/ annotations/test
|
||||
|
||||
rm 0325updated.task1train\(626p\).zip && rm task1\&2_test\(361p\).zip && rm text.task1\&2-test(361p\).zip
|
||||
```
|
||||
|
||||
- Step3: Generate `instances_training.json` and `instances_test.json` with the following command:
|
||||
|
||||
```bash
|
||||
python tools/data/textdet/sroie_converter.py PATH/TO/sroie --nproc 4
|
||||
```
|
||||
|
||||
- After running the above codes, the directory structure should be as follows:
|
||||
|
||||
```text
|
||||
├── sroie
|
||||
│ ├── annotations
|
||||
│ ├── imgs
|
||||
│ ├── instances_test.json
|
||||
│ └── instances_training.json
|
||||
```
|
||||
### Lecture Video DB
|
||||
|
||||
- Step1: Download [IIIT-CVid.zip](http://cdn.iiit.ac.in/cdn/preon.iiit.ac.in/~kartik/IIIT-CVid.zip) to `lv/`.
|
||||
|
@ -103,6 +103,7 @@
|
||||
| Totaltext | [homepage](https://github.com/cs-chan/Total-Text-Dataset) | - | - | |
|
||||
| OpenVINO | [Open Images](https://github.com/cvdfoundation/open-images-dataset) | [annotations](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text) | [annotations](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text) | |
|
||||
| FUNSD | [homepage](https://guillaumejaume.github.io/FUNSD/) | - | - | |
|
||||
| SROIE | [homepage](https://rrc.cvc.uab.es/?ch=13) | - | - | - |
|
||||
| Lecture Video DB | [homepage](https://cvit.iiit.ac.in/research/projects/cvit-projects/lecturevideodb) | - | - | - |
|
||||
|
||||
|
||||
@ -327,6 +328,44 @@ rm dataset.zip && rm -rf dataset
|
||||
python tools/data/textrecog/funsd_converter.py PATH/TO/funsd --nproc 4
|
||||
```
|
||||
|
||||
### SROIE
|
||||
|
||||
- Step1: Step1: Download `0325updated.task1train(626p).zip`, `task1&2_test(361p).zip`, and `text.task1&2-test(361p).zip` from [homepage](https://rrc.cvc.uab.es/?ch=13&com=downloads) to `sroie/`
|
||||
|
||||
- Step2:
|
||||
|
||||
```bash
|
||||
mkdir sroie && cd sroie
|
||||
mkdir imgs && mkdir annotations && mkdir imgs/training
|
||||
|
||||
# Warnninig: The zip files downloaded from Google Drive and BaiduYun Cloud may
|
||||
# be different, the user should revise the following commands to the correct
|
||||
# file name if encounter with errors while extracting and move the files.
|
||||
unzip -q 0325updated.task1train\(626p\).zip && unzip -q task1\&2_test\(361p\).zip && unzip -q text.task1\&2-test(361p\).zip
|
||||
|
||||
# For images
|
||||
mv 0325updated.task1train\(626p\)/*.jpg imgs/training && mv fulltext_test\(361p\) imgs/test
|
||||
|
||||
# For annotations
|
||||
mv 0325updated.task1train\(626p\) annotations/training && mv text.task1\&2-testги361p\)/ annotations/test
|
||||
|
||||
rm 0325updated.task1train\(626p\).zip && rm task1\&2_test\(361p\).zip && rm text.task1\&2-test(361p\).zip
|
||||
```
|
||||
|
||||
- Step3: Generate `train_label.jsonl` and `test_label.jsonl` and crop images using 4 processes with the following command:
|
||||
|
||||
```bash
|
||||
python tools/data/textrecog/sroie_converter.py PATH/TO/sroie --nproc 4
|
||||
```
|
||||
|
||||
- After running the above codes, the directory structure should be as follows:
|
||||
|
||||
```text
|
||||
├── sroie
|
||||
│ ├── crops
|
||||
│ ├── train_label.jsonl
|
||||
│ ├── test_label.jsonl
|
||||
```
|
||||
### Lecture Video DB
|
||||
|
||||
**The LV dataset has already provided cropped images and the corresponding annotations**
|
||||
|
166
tools/data/textdet/sroie_converter.py
Normal file
166
tools/data/textdet/sroie_converter.py
Normal file
@ -0,0 +1,166 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import os
|
||||
import os.path as osp
|
||||
|
||||
import mmcv
|
||||
import numpy as np
|
||||
|
||||
from mmocr.utils import convert_annotations
|
||||
|
||||
|
||||
def collect_files(img_dir, gt_dir):
|
||||
"""Collect all images and their corresponding groundtruth files.
|
||||
|
||||
Args:
|
||||
img_dir (str): The image directory
|
||||
gt_dir (str): The groundtruth directory
|
||||
|
||||
Returns:
|
||||
files (list): The list of tuples (img_file, groundtruth_file)
|
||||
"""
|
||||
|
||||
assert isinstance(img_dir, str)
|
||||
assert img_dir
|
||||
assert isinstance(gt_dir, str)
|
||||
assert gt_dir
|
||||
|
||||
ann_list, imgs_list = [], []
|
||||
for gt_file in os.listdir(gt_dir):
|
||||
# Filtering repeated and missing images
|
||||
if '(' in gt_file or gt_file == 'X51006619570.txt':
|
||||
continue
|
||||
ann_list.append(osp.join(gt_dir, gt_file))
|
||||
imgs_list.append(osp.join(img_dir, gt_file.replace('.txt', '.jpg')))
|
||||
|
||||
files = list(zip(sorted(imgs_list), sorted(ann_list)))
|
||||
assert len(files), f'No images found in {img_dir}'
|
||||
|
||||
print(f'Loaded {len(files)} images from {img_dir}')
|
||||
|
||||
return files
|
||||
|
||||
|
||||
def collect_annotations(files, nproc=1):
|
||||
"""Collect the annotation information.
|
||||
|
||||
Args:
|
||||
files (list): The list of tuples (image_file, groundtruth_file)
|
||||
nproc (int): The number of process to collect annotations
|
||||
|
||||
Returns:
|
||||
images (list): The list of image information dicts
|
||||
"""
|
||||
|
||||
assert isinstance(files, list)
|
||||
assert isinstance(nproc, int)
|
||||
|
||||
if nproc > 1:
|
||||
images = mmcv.track_parallel_progress(
|
||||
load_img_info, files, nproc=nproc)
|
||||
else:
|
||||
images = mmcv.track_progress(load_img_info, files)
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def load_img_info(files):
|
||||
"""Load the information of one image.
|
||||
|
||||
Args:
|
||||
files (tuple): The tuple of (img_file, groundtruth_file)
|
||||
|
||||
Returns:
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
"""
|
||||
|
||||
assert isinstance(files, tuple)
|
||||
|
||||
img_file, gt_file = files
|
||||
assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split(
|
||||
'.')[0]
|
||||
# read imgs while ignoring orientations
|
||||
img = mmcv.imread(img_file, 'unchanged')
|
||||
|
||||
img_info = dict(
|
||||
file_name=osp.join(osp.basename(img_file)),
|
||||
height=img.shape[0],
|
||||
width=img.shape[1],
|
||||
segm_file=osp.join(osp.basename(gt_file)))
|
||||
|
||||
if osp.splitext(gt_file)[1] == '.txt':
|
||||
img_info = load_txt_info(gt_file, img_info)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
return img_info
|
||||
|
||||
|
||||
def load_txt_info(gt_file, img_info):
|
||||
"""Collect the annotation information.
|
||||
|
||||
Args:
|
||||
gt_file (list): The list of tuples (image_file, groundtruth_file)
|
||||
img_info (int): The dict of the img and annotation information
|
||||
|
||||
Returns:
|
||||
img_info (list): The dict of the img and annotation information
|
||||
"""
|
||||
|
||||
with open(gt_file, 'r', encoding='unicode_escape') as f:
|
||||
anno_info = []
|
||||
for ann in f.readlines():
|
||||
|
||||
# annotation format [x1, y1, x2, y2, x3, y3, x4, y4, transcript]
|
||||
try:
|
||||
ann_box = np.array(ann.split(',')[0:8]).astype(int).tolist()
|
||||
except ValueError:
|
||||
# skip invalid annotation line
|
||||
continue
|
||||
x = max(0, min(ann_box[0::2]))
|
||||
y = max(0, min(ann_box[1::2]))
|
||||
w, h = max(ann_box[0::2]) - x, max(ann_box[1::2]) - y
|
||||
bbox = [x, y, w, h]
|
||||
segmentation = ann_box
|
||||
|
||||
anno = dict(
|
||||
iscrowd=0,
|
||||
category_id=1,
|
||||
bbox=bbox,
|
||||
area=w * h,
|
||||
segmentation=[segmentation])
|
||||
anno_info.append(anno)
|
||||
|
||||
img_info.update(anno_info=anno_info)
|
||||
|
||||
return img_info
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Generate training and test set of SROIE')
|
||||
parser.add_argument('root_path', help='Root dir path of SROIE')
|
||||
parser.add_argument(
|
||||
'--nproc', default=1, type=int, help='Number of process')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
root_path = args.root_path
|
||||
|
||||
for split in ['training', 'test']:
|
||||
print(f'Processing {split} set...')
|
||||
with mmcv.Timer(print_tmpl='It takes {}s to convert SROIE annotation'):
|
||||
files = collect_files(
|
||||
osp.join(root_path, 'imgs', split),
|
||||
osp.join(root_path, 'annotations', split))
|
||||
image_infos = collect_annotations(files, nproc=args.nproc)
|
||||
convert_annotations(
|
||||
image_infos, osp.join(root_path,
|
||||
'instances_' + split + '.json'))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
219
tools/data/textrecog/sroie_converter.py
Normal file
219
tools/data/textrecog/sroie_converter.py
Normal file
@ -0,0 +1,219 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import os.path as osp
|
||||
|
||||
import mmcv
|
||||
import numpy as np
|
||||
|
||||
from mmocr.datasets.pipelines.crop import crop_img
|
||||
from mmocr.utils.fileio import list_to_file
|
||||
|
||||
|
||||
def collect_files(img_dir, gt_dir):
|
||||
"""Collect all images and their corresponding groundtruth files.
|
||||
|
||||
Args:
|
||||
img_dir (str): The image directory
|
||||
gt_dir (str): The groundtruth directory
|
||||
|
||||
Returns:
|
||||
files (list): The list of tuples (img_file, groundtruth_file)
|
||||
"""
|
||||
|
||||
assert isinstance(img_dir, str)
|
||||
assert img_dir
|
||||
assert isinstance(gt_dir, str)
|
||||
assert gt_dir
|
||||
|
||||
ann_list, imgs_list = [], []
|
||||
for gt_file in os.listdir(gt_dir):
|
||||
# Filtering repeated and missing images
|
||||
if '(' in gt_file or gt_file == 'X51006619570.txt':
|
||||
continue
|
||||
ann_list.append(osp.join(gt_dir, gt_file))
|
||||
imgs_list.append(osp.join(img_dir, gt_file.replace('.txt', '.jpg')))
|
||||
|
||||
files = list(zip(sorted(imgs_list), sorted(ann_list)))
|
||||
assert len(files), f'No images found in {img_dir}'
|
||||
|
||||
print(f'Loaded {len(files)} images from {img_dir}')
|
||||
|
||||
return files
|
||||
|
||||
|
||||
def collect_annotations(files, nproc=1):
|
||||
"""Collect the annotation information.
|
||||
|
||||
Args:
|
||||
files (list): The list of tuples (image_file, groundtruth_file)
|
||||
nproc (int): The number of process to collect annotations
|
||||
|
||||
Returns:
|
||||
images (list): The list of image information dicts
|
||||
"""
|
||||
|
||||
assert isinstance(files, list)
|
||||
assert isinstance(nproc, int)
|
||||
|
||||
if nproc > 1:
|
||||
images = mmcv.track_parallel_progress(
|
||||
load_img_info, files, nproc=nproc)
|
||||
else:
|
||||
images = mmcv.track_progress(load_img_info, files)
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def load_img_info(files):
|
||||
"""Load the information of one image.
|
||||
|
||||
Args:
|
||||
files (tuple): The tuple of (img_file, groundtruth_file)
|
||||
|
||||
Returns:
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
"""
|
||||
|
||||
assert isinstance(files, tuple)
|
||||
|
||||
img_file, gt_file = files
|
||||
assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split(
|
||||
'.')[0]
|
||||
# read imgs while ignoring orientations
|
||||
img = mmcv.imread(img_file, 'unchanged')
|
||||
|
||||
img_info = dict(
|
||||
file_name=osp.join(osp.basename(img_file)),
|
||||
height=img.shape[0],
|
||||
width=img.shape[1],
|
||||
segm_file=osp.join(osp.basename(gt_file)))
|
||||
|
||||
if osp.splitext(gt_file)[1] == '.txt':
|
||||
img_info = load_txt_info(gt_file, img_info)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
return img_info
|
||||
|
||||
|
||||
def load_txt_info(gt_file, img_info):
|
||||
"""Collect the annotation information.
|
||||
|
||||
Annotation Format
|
||||
x1, y1, x2, y2, x3, y3, x4, y4, transcript
|
||||
|
||||
Args:
|
||||
gt_file (list): The list of tuples (image_file, groundtruth_file)
|
||||
img_info (int): The dict of the img and annotation information
|
||||
|
||||
Returns:
|
||||
img_info (list): The dict of the img and annotation information
|
||||
"""
|
||||
|
||||
with open(gt_file, 'r', encoding='unicode_escape') as f:
|
||||
anno_info = []
|
||||
for ann in f.readlines():
|
||||
# skip invalid annotation line
|
||||
try:
|
||||
bbox = np.array(ann.split(',')[0:8]).astype(int).tolist()
|
||||
except ValueError:
|
||||
|
||||
continue
|
||||
word = ann.split(',')[-1].replace('\n', '').strip()
|
||||
|
||||
anno = dict(bbox=bbox, word=word)
|
||||
anno_info.append(anno)
|
||||
|
||||
img_info.update(anno_info=anno_info)
|
||||
|
||||
return img_info
|
||||
|
||||
|
||||
def generate_ann(root_path, split, image_infos, format):
|
||||
"""Generate cropped annotations and label txt file.
|
||||
|
||||
Args:
|
||||
root_path (str): The root path of the dataset
|
||||
split (str): The split of dataset. Namely: training or test
|
||||
image_infos (list[dict]): A list of dicts of the img and
|
||||
annotation information
|
||||
format (str): Annotation format, should be either 'jsonl' or 'txt'
|
||||
"""
|
||||
|
||||
dst_image_root = osp.join(root_path, 'crops', split)
|
||||
if split == 'training':
|
||||
dst_label_file = osp.join(root_path, f'train_label.{format}')
|
||||
elif split == 'test':
|
||||
dst_label_file = osp.join(root_path, f'test_label.{format}')
|
||||
os.makedirs(dst_image_root, exist_ok=True)
|
||||
|
||||
lines = []
|
||||
for image_info in image_infos:
|
||||
index = 1
|
||||
src_img_path = osp.join(root_path, 'imgs', split,
|
||||
image_info['file_name'])
|
||||
image = mmcv.imread(src_img_path)
|
||||
src_img_root = image_info['file_name'].split('.')[0]
|
||||
|
||||
for anno in image_info['anno_info']:
|
||||
word = anno['word']
|
||||
dst_img = crop_img(image, anno['bbox'], 0, 0)
|
||||
|
||||
# Skip invalid annotations
|
||||
if min(dst_img.shape) == 0 or len(word) == 0:
|
||||
continue
|
||||
|
||||
dst_img_name = f'{src_img_root}_{index}.png'
|
||||
index += 1
|
||||
dst_img_path = osp.join(dst_image_root, dst_img_name)
|
||||
mmcv.imwrite(dst_img, dst_img_path)
|
||||
|
||||
if format == 'txt':
|
||||
lines.append(f'{osp.basename(dst_image_root)}/{dst_img_name} '
|
||||
f'{word}')
|
||||
elif format == 'jsonl':
|
||||
lines.append(
|
||||
json.dumps({
|
||||
'filename':
|
||||
f'{osp.basename(dst_image_root)}/{dst_img_name}',
|
||||
'text': word
|
||||
}))
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
list_to_file(dst_label_file, lines)
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Generate training and test set of SROIE')
|
||||
parser.add_argument('root_path', help='Root dir path of SROIE')
|
||||
parser.add_argument(
|
||||
'--nproc', default=1, type=int, help='Number of process')
|
||||
parser.add_argument(
|
||||
'--format',
|
||||
default='jsonl',
|
||||
help='Use jsonl or string to format annotations',
|
||||
choices=['jsonl', 'txt'])
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
root_path = args.root_path
|
||||
|
||||
for split in ['training', 'test']:
|
||||
print(f'Processing {split} set...')
|
||||
with mmcv.Timer(print_tmpl='It takes {}s to convert SROIE annotation'):
|
||||
files = collect_files(
|
||||
osp.join(root_path, 'imgs', split),
|
||||
osp.join(root_path, 'annotations', split))
|
||||
image_infos = collect_annotations(files, nproc=args.nproc)
|
||||
generate_ann(root_path, split, image_infos, args.format)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user