[Feature] Add SROIE Converter (#810)

* add SROIE converter

* add sroie converter

* fix docstring indentation

* fix lint

* remove val split; add test split

* delete google drive timestamp

Co-authored-by: Tong Gao <gaotongxiao@gmail.com>

* remove timestamp

* update docs; support jsonl; fix crop

* move tree structure

* move tree structure

* move directory tree

* fix indentation

Co-authored-by: Tong Gao <gaotongxiao@gmail.com>
This commit is contained in:
Xinyu Wang 2022-03-30 13:14:23 +08:00 committed by GitHub
parent 958e4a3e87
commit bdd32c8052
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 464 additions and 0 deletions

View File

@ -59,6 +59,7 @@ The structure of the text detection dataset directory is organized as follows.
| Totaltext | [homepage](https://github.com/cs-chan/Total-Text-Dataset) | - | - | - |
| CurvedSynText150k | [homepage](https://github.com/aim-uofa/AdelaiDet/blob/master/datasets/README.md) \| [Part1](https://drive.google.com/file/d/1OSJ-zId2h3t_-I7g_wUkrK-VqQy153Kj/view?usp=sharing) \| [Part2](https://drive.google.com/file/d/1EzkcOlIgEp5wmEubvHb7-J5EImHExYgY/view?usp=sharing) | [instances_training.json](https://download.openmmlab.com/mmocr/data/curvedsyntext/instances_training.json) | - | - |
| FUNSD | [homepage](https://guillaumejaume.github.io/FUNSD/) | - | - | - |
| SROIE | [homepage](https://rrc.cvc.uab.es/?ch=13) | - | - | - |
| Lecture Video DB | [homepage](https://cvit.iiit.ac.in/research/projects/cvit-projects/lecturevideodb) | - | - | - |
@ -219,6 +220,45 @@ rm dataset.zip && rm -rf dataset
python tools/data/textdet/funsd_converter.py PATH/TO/funsd --nproc 4
```
### SROIE
- Step1: Download `0325updated.task1train(626p).zip`, `task1&2_test(361p).zip`, and `text.task1&2-test361p).zip` from [homepage](https://rrc.cvc.uab.es/?ch=13&com=downloads) to `sroie/`
- Step2:
```bash
mkdir sroie && cd sroie
mkdir imgs && mkdir annotations && mkdir imgs/training
# Warnninig: The zip files downloaded from Google Drive and BaiduYun Cloud may
# be different, the user should revise the following commands to the correct
# file name if encounter with errors while extracting and move the files.
unzip -q 0325updated.task1train\(626p\).zip && unzip -q task1\&2_test\(361p\).zip && unzip -q text.task1\&2-test361p\).zip
# For images
mv 0325updated.task1train\(626p\)/*.jpg imgs/training && mv fulltext_test\(361p\) imgs/test
# For annotations
mv 0325updated.task1train\(626p\) annotations/training && mv text.task1\&2-testги361p\)/ annotations/test
rm 0325updated.task1train\(626p\).zip && rm task1\&2_test\(361p\).zip && rm text.task1\&2-test361p\).zip
```
- Step3: Generate `instances_training.json` and `instances_test.json` with the following command:
```bash
python tools/data/textdet/sroie_converter.py PATH/TO/sroie --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
├── sroie
│   ├── annotations
│   ├── imgs
│   ├── instances_test.json
│   └── instances_training.json
```
### Lecture Video DB
- Step1: Download [IIIT-CVid.zip](http://cdn.iiit.ac.in/cdn/preon.iiit.ac.in/~kartik/IIIT-CVid.zip) to `lv/`.

View File

@ -103,6 +103,7 @@
| Totaltext | [homepage](https://github.com/cs-chan/Total-Text-Dataset) | - | - | |
| OpenVINO | [Open Images](https://github.com/cvdfoundation/open-images-dataset) | [annotations](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text) | [annotations](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text) | |
| FUNSD | [homepage](https://guillaumejaume.github.io/FUNSD/) | - | - | |
| SROIE | [homepage](https://rrc.cvc.uab.es/?ch=13) | - | - | - |
| Lecture Video DB | [homepage](https://cvit.iiit.ac.in/research/projects/cvit-projects/lecturevideodb) | - | - | - |
@ -327,6 +328,44 @@ rm dataset.zip && rm -rf dataset
python tools/data/textrecog/funsd_converter.py PATH/TO/funsd --nproc 4
```
### SROIE
- Step1: Step1: Download `0325updated.task1train(626p).zip`, `task1&2_test(361p).zip`, and `text.task1&2-test361p).zip` from [homepage](https://rrc.cvc.uab.es/?ch=13&com=downloads) to `sroie/`
- Step2:
```bash
mkdir sroie && cd sroie
mkdir imgs && mkdir annotations && mkdir imgs/training
# Warnninig: The zip files downloaded from Google Drive and BaiduYun Cloud may
# be different, the user should revise the following commands to the correct
# file name if encounter with errors while extracting and move the files.
unzip -q 0325updated.task1train\(626p\).zip && unzip -q task1\&2_test\(361p\).zip && unzip -q text.task1\&2-test361p\).zip
# For images
mv 0325updated.task1train\(626p\)/*.jpg imgs/training && mv fulltext_test\(361p\) imgs/test
# For annotations
mv 0325updated.task1train\(626p\) annotations/training && mv text.task1\&2-testги361p\)/ annotations/test
rm 0325updated.task1train\(626p\).zip && rm task1\&2_test\(361p\).zip && rm text.task1\&2-test361p\).zip
```
- Step3: Generate `train_label.jsonl` and `test_label.jsonl` and crop images using 4 processes with the following command:
```bash
python tools/data/textrecog/sroie_converter.py PATH/TO/sroie --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
├── sroie
│ ├── crops
│ ├── train_label.jsonl
│ ├── test_label.jsonl
```
### Lecture Video DB
**The LV dataset has already provided cropped images and the corresponding annotations**

View File

@ -0,0 +1,166 @@
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import mmcv
import numpy as np
from mmocr.utils import convert_annotations
def collect_files(img_dir, gt_dir):
"""Collect all images and their corresponding groundtruth files.
Args:
img_dir (str): The image directory
gt_dir (str): The groundtruth directory
Returns:
files (list): The list of tuples (img_file, groundtruth_file)
"""
assert isinstance(img_dir, str)
assert img_dir
assert isinstance(gt_dir, str)
assert gt_dir
ann_list, imgs_list = [], []
for gt_file in os.listdir(gt_dir):
# Filtering repeated and missing images
if '(' in gt_file or gt_file == 'X51006619570.txt':
continue
ann_list.append(osp.join(gt_dir, gt_file))
imgs_list.append(osp.join(img_dir, gt_file.replace('.txt', '.jpg')))
files = list(zip(sorted(imgs_list), sorted(ann_list)))
assert len(files), f'No images found in {img_dir}'
print(f'Loaded {len(files)} images from {img_dir}')
return files
def collect_annotations(files, nproc=1):
"""Collect the annotation information.
Args:
files (list): The list of tuples (image_file, groundtruth_file)
nproc (int): The number of process to collect annotations
Returns:
images (list): The list of image information dicts
"""
assert isinstance(files, list)
assert isinstance(nproc, int)
if nproc > 1:
images = mmcv.track_parallel_progress(
load_img_info, files, nproc=nproc)
else:
images = mmcv.track_progress(load_img_info, files)
return images
def load_img_info(files):
"""Load the information of one image.
Args:
files (tuple): The tuple of (img_file, groundtruth_file)
Returns:
img_info (dict): The dict of the img and annotation information
"""
assert isinstance(files, tuple)
img_file, gt_file = files
assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split(
'.')[0]
# read imgs while ignoring orientations
img = mmcv.imread(img_file, 'unchanged')
img_info = dict(
file_name=osp.join(osp.basename(img_file)),
height=img.shape[0],
width=img.shape[1],
segm_file=osp.join(osp.basename(gt_file)))
if osp.splitext(gt_file)[1] == '.txt':
img_info = load_txt_info(gt_file, img_info)
else:
raise NotImplementedError
return img_info
def load_txt_info(gt_file, img_info):
"""Collect the annotation information.
Args:
gt_file (list): The list of tuples (image_file, groundtruth_file)
img_info (int): The dict of the img and annotation information
Returns:
img_info (list): The dict of the img and annotation information
"""
with open(gt_file, 'r', encoding='unicode_escape') as f:
anno_info = []
for ann in f.readlines():
# annotation format [x1, y1, x2, y2, x3, y3, x4, y4, transcript]
try:
ann_box = np.array(ann.split(',')[0:8]).astype(int).tolist()
except ValueError:
# skip invalid annotation line
continue
x = max(0, min(ann_box[0::2]))
y = max(0, min(ann_box[1::2]))
w, h = max(ann_box[0::2]) - x, max(ann_box[1::2]) - y
bbox = [x, y, w, h]
segmentation = ann_box
anno = dict(
iscrowd=0,
category_id=1,
bbox=bbox,
area=w * h,
segmentation=[segmentation])
anno_info.append(anno)
img_info.update(anno_info=anno_info)
return img_info
def parse_args():
parser = argparse.ArgumentParser(
description='Generate training and test set of SROIE')
parser.add_argument('root_path', help='Root dir path of SROIE')
parser.add_argument(
'--nproc', default=1, type=int, help='Number of process')
args = parser.parse_args()
return args
def main():
args = parse_args()
root_path = args.root_path
for split in ['training', 'test']:
print(f'Processing {split} set...')
with mmcv.Timer(print_tmpl='It takes {}s to convert SROIE annotation'):
files = collect_files(
osp.join(root_path, 'imgs', split),
osp.join(root_path, 'annotations', split))
image_infos = collect_annotations(files, nproc=args.nproc)
convert_annotations(
image_infos, osp.join(root_path,
'instances_' + split + '.json'))
if __name__ == '__main__':
main()

View File

@ -0,0 +1,219 @@
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import json
import os
import os.path as osp
import mmcv
import numpy as np
from mmocr.datasets.pipelines.crop import crop_img
from mmocr.utils.fileio import list_to_file
def collect_files(img_dir, gt_dir):
"""Collect all images and their corresponding groundtruth files.
Args:
img_dir (str): The image directory
gt_dir (str): The groundtruth directory
Returns:
files (list): The list of tuples (img_file, groundtruth_file)
"""
assert isinstance(img_dir, str)
assert img_dir
assert isinstance(gt_dir, str)
assert gt_dir
ann_list, imgs_list = [], []
for gt_file in os.listdir(gt_dir):
# Filtering repeated and missing images
if '(' in gt_file or gt_file == 'X51006619570.txt':
continue
ann_list.append(osp.join(gt_dir, gt_file))
imgs_list.append(osp.join(img_dir, gt_file.replace('.txt', '.jpg')))
files = list(zip(sorted(imgs_list), sorted(ann_list)))
assert len(files), f'No images found in {img_dir}'
print(f'Loaded {len(files)} images from {img_dir}')
return files
def collect_annotations(files, nproc=1):
"""Collect the annotation information.
Args:
files (list): The list of tuples (image_file, groundtruth_file)
nproc (int): The number of process to collect annotations
Returns:
images (list): The list of image information dicts
"""
assert isinstance(files, list)
assert isinstance(nproc, int)
if nproc > 1:
images = mmcv.track_parallel_progress(
load_img_info, files, nproc=nproc)
else:
images = mmcv.track_progress(load_img_info, files)
return images
def load_img_info(files):
"""Load the information of one image.
Args:
files (tuple): The tuple of (img_file, groundtruth_file)
Returns:
img_info (dict): The dict of the img and annotation information
"""
assert isinstance(files, tuple)
img_file, gt_file = files
assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split(
'.')[0]
# read imgs while ignoring orientations
img = mmcv.imread(img_file, 'unchanged')
img_info = dict(
file_name=osp.join(osp.basename(img_file)),
height=img.shape[0],
width=img.shape[1],
segm_file=osp.join(osp.basename(gt_file)))
if osp.splitext(gt_file)[1] == '.txt':
img_info = load_txt_info(gt_file, img_info)
else:
raise NotImplementedError
return img_info
def load_txt_info(gt_file, img_info):
"""Collect the annotation information.
Annotation Format
x1, y1, x2, y2, x3, y3, x4, y4, transcript
Args:
gt_file (list): The list of tuples (image_file, groundtruth_file)
img_info (int): The dict of the img and annotation information
Returns:
img_info (list): The dict of the img and annotation information
"""
with open(gt_file, 'r', encoding='unicode_escape') as f:
anno_info = []
for ann in f.readlines():
# skip invalid annotation line
try:
bbox = np.array(ann.split(',')[0:8]).astype(int).tolist()
except ValueError:
continue
word = ann.split(',')[-1].replace('\n', '').strip()
anno = dict(bbox=bbox, word=word)
anno_info.append(anno)
img_info.update(anno_info=anno_info)
return img_info
def generate_ann(root_path, split, image_infos, format):
"""Generate cropped annotations and label txt file.
Args:
root_path (str): The root path of the dataset
split (str): The split of dataset. Namely: training or test
image_infos (list[dict]): A list of dicts of the img and
annotation information
format (str): Annotation format, should be either 'jsonl' or 'txt'
"""
dst_image_root = osp.join(root_path, 'crops', split)
if split == 'training':
dst_label_file = osp.join(root_path, f'train_label.{format}')
elif split == 'test':
dst_label_file = osp.join(root_path, f'test_label.{format}')
os.makedirs(dst_image_root, exist_ok=True)
lines = []
for image_info in image_infos:
index = 1
src_img_path = osp.join(root_path, 'imgs', split,
image_info['file_name'])
image = mmcv.imread(src_img_path)
src_img_root = image_info['file_name'].split('.')[0]
for anno in image_info['anno_info']:
word = anno['word']
dst_img = crop_img(image, anno['bbox'], 0, 0)
# Skip invalid annotations
if min(dst_img.shape) == 0 or len(word) == 0:
continue
dst_img_name = f'{src_img_root}_{index}.png'
index += 1
dst_img_path = osp.join(dst_image_root, dst_img_name)
mmcv.imwrite(dst_img, dst_img_path)
if format == 'txt':
lines.append(f'{osp.basename(dst_image_root)}/{dst_img_name} '
f'{word}')
elif format == 'jsonl':
lines.append(
json.dumps({
'filename':
f'{osp.basename(dst_image_root)}/{dst_img_name}',
'text': word
}))
else:
raise NotImplementedError
list_to_file(dst_label_file, lines)
def parse_args():
parser = argparse.ArgumentParser(
description='Generate training and test set of SROIE')
parser.add_argument('root_path', help='Root dir path of SROIE')
parser.add_argument(
'--nproc', default=1, type=int, help='Number of process')
parser.add_argument(
'--format',
default='jsonl',
help='Use jsonl or string to format annotations',
choices=['jsonl', 'txt'])
args = parser.parse_args()
return args
def main():
args = parse_args()
root_path = args.root_path
for split in ['training', 'test']:
print(f'Processing {split} set...')
with mmcv.Timer(print_tmpl='It takes {}s to convert SROIE annotation'):
files = collect_files(
osp.join(root_path, 'imgs', split),
osp.join(root_path, 'annotations', split))
image_infos = collect_annotations(files, nproc=args.nproc)
generate_ann(root_path, split, image_infos, args.format)
if __name__ == '__main__':
main()