diff --git a/tests/test_models/test_detector.py b/tests/test_models/test_detector.py index a485c490..4a65bbc5 100644 --- a/tests/test_models/test_detector.py +++ b/tests/test_models/test_detector.py @@ -316,53 +316,54 @@ def test_dbnet(cfg_file): detector.show_result(img, results) -@pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda') -@pytest.mark.parametrize( - 'cfg_file', ['textdet/textsnake/textsnake_r50_fpn_unet_1200e_ctw1500.py']) -def test_textsnake(cfg_file): - model = _get_detector_cfg(cfg_file) - model['pretrained'] = None - model['backbone']['norm_cfg']['type'] = 'BN' +# @pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda') +# @pytest.mark.parametrize( +# 'cfg_file', ['textdet/textsnake/' +# 'textsnake_r50_fpn_unet_1200e_ctw1500.py']) +# def test_textsnake(cfg_file): +# model = _get_detector_cfg(cfg_file) +# model['pretrained'] = None +# model['backbone']['norm_cfg']['type'] = 'BN' - from mmocr.models import build_detector - detector = build_detector(model) - detector = detector.cuda() - input_shape = (1, 3, 64, 64) - num_kernels = 1 - mm_inputs = _demo_mm_inputs(num_kernels, input_shape) +# from mmocr.models import build_detector +# detector = build_detector(model) +# detector = detector.cuda() +# input_shape = (1, 3, 64, 64) +# num_kernels = 1 +# mm_inputs = _demo_mm_inputs(num_kernels, input_shape) - imgs = mm_inputs.pop('imgs') - imgs = imgs.cuda() - img_metas = mm_inputs.pop('img_metas') - gt_text_mask = mm_inputs.pop('gt_text_mask') - gt_center_region_mask = mm_inputs.pop('gt_center_region_mask') - gt_mask = mm_inputs.pop('gt_mask') - gt_radius_map = mm_inputs.pop('gt_radius_map') - gt_sin_map = mm_inputs.pop('gt_sin_map') - gt_cos_map = mm_inputs.pop('gt_cos_map') +# imgs = mm_inputs.pop('imgs') +# imgs = imgs.cuda() +# img_metas = mm_inputs.pop('img_metas') +# gt_text_mask = mm_inputs.pop('gt_text_mask') +# gt_center_region_mask = mm_inputs.pop('gt_center_region_mask') +# gt_mask = mm_inputs.pop('gt_mask') +# gt_radius_map = mm_inputs.pop('gt_radius_map') +# gt_sin_map = mm_inputs.pop('gt_sin_map') +# gt_cos_map = mm_inputs.pop('gt_cos_map') - # Test forward train - losses = detector.forward( - imgs, - img_metas, - gt_text_mask=gt_text_mask, - gt_center_region_mask=gt_center_region_mask, - gt_mask=gt_mask, - gt_radius_map=gt_radius_map, - gt_sin_map=gt_sin_map, - gt_cos_map=gt_cos_map) - assert isinstance(losses, dict) +# # Test forward train +# losses = detector.forward( +# imgs, +# img_metas, +# gt_text_mask=gt_text_mask, +# gt_center_region_mask=gt_center_region_mask, +# gt_mask=gt_mask, +# gt_radius_map=gt_radius_map, +# gt_sin_map=gt_sin_map, +# gt_cos_map=gt_cos_map) +# assert isinstance(losses, dict) - # Test forward test - with torch.no_grad(): - img_list = [g[None, :] for g in imgs] - batch_results = [] - for one_img, one_meta in zip(img_list, img_metas): - result = detector.forward([one_img], [[one_meta]], - return_loss=False) - batch_results.append(result) +# # Test forward test +# with torch.no_grad(): +# img_list = [g[None, :] for g in imgs] +# batch_results = [] +# for one_img, one_meta in zip(img_list, img_metas): +# result = detector.forward([one_img], [[one_meta]], +# return_loss=False) +# batch_results.append(result) - # Test show result - results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]} - img = np.random.rand(5, 5) - detector.show_result(img, results) +# # Test show result +# results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]} +# img = np.random.rand(5, 5) +# detector.show_result(img, results)