mirror of
https://github.com/open-mmlab/mmocr.git
synced 2025-06-03 21:54:47 +08:00
[Docs] Update Instructions for New Data Converters (#900)
* update docs * fix spaces & add deprecation * fix funsd * remove repeated docs
This commit is contained in:
parent
bea8587f3f
commit
c6bb105b83
@ -52,6 +52,8 @@ The structure of the text detection dataset directory is organized as follows.
|
||||
| :---------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------: | :---: |
|
||||
| | | training | validation | testing | |
|
||||
| CTW1500 | [homepage](https://github.com/Yuliang-Liu/Curve-Text-Detector) | - | - | - |
|
||||
| ICDAR2011 | [homepage](https://rrc.cvc.uab.es/?ch=1) | - | - | |
|
||||
| ICDAR2013 | [homepage](https://rrc.cvc.uab.es/?ch=2) | - | - | - |
|
||||
| ICDAR2015 | [homepage](https://rrc.cvc.uab.es/?ch=4&com=downloads) | [instances_training.json](https://download.openmmlab.com/mmocr/data/icdar2015/instances_training.json) | - | [instances_test.json](https://download.openmmlab.com/mmocr/data/icdar2015/instances_test.json) |
|
||||
| ICDAR2017 | [homepage](https://rrc.cvc.uab.es/?ch=8&com=downloads) | [instances_training.json](https://download.openmmlab.com/mmocr/data/icdar2017/instances_training.json) | [instances_val.json](https://download.openmmlab.com/mmocr/data/icdar2017/instances_val.json) | - | | |
|
||||
| Synthtext | [homepage](https://www.robots.ox.ac.uk/~vgg/data/scenetext/) | instances_training.lmdb ([data.mdb](https://download.openmmlab.com/mmocr/data/synthtext/instances_training.lmdb/data.mdb), [lock.mdb](https://download.openmmlab.com/mmocr/data/synthtext/instances_training.lmdb/lock.mdb)) | - | - |
|
||||
@ -63,6 +65,11 @@ The structure of the text detection dataset directory is organized as follows.
|
||||
| NAF | [homepage](https://github.com/herobd/NAF_dataset/releases/tag/v1.0) | - | - | - |
|
||||
| SROIE | [homepage](https://rrc.cvc.uab.es/?ch=13) | - | - | - |
|
||||
| Lecture Video DB | [homepage](https://cvit.iiit.ac.in/research/projects/cvit-projects/lecturevideodb) | - | - | - |
|
||||
| IMGUR | [homepage](https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset) | - | - | - |
|
||||
| KAIST | [homepage](http://www.iapr-tc11.org/mediawiki/index.php/KAIST_Scene_Text_Database) | - | - | - |
|
||||
| MTWI | [homepage](https://tianchi.aliyun.com/competition/entrance/231685/information?lang=en-us) | - | - | - |
|
||||
| COCO Text v2 | [homepage](https://bgshih.github.io/cocotext/) | - | - | - |
|
||||
| ReCTS | [homepage](https://rrc.cvc.uab.es/?ch=12) | - | - | - |
|
||||
|
||||
|
||||
## Important Note
|
||||
@ -124,6 +131,82 @@ unzip test_images.zip && mv test_images test
|
||||
python tools/data/textdet/ctw1500_converter.py /path/to/ctw1500 -o /path/to/ctw1500 --split-list training test
|
||||
```
|
||||
|
||||
### ICDAR 2011 (Born-Digital Images)
|
||||
- Step1: Download `Challenge1_Training_Task12_Images.zip`, `Challenge1_Training_Task1_GT.zip`, `Challenge1_Test_Task12_Images.zip`, and `Challenge1_Test_Task1_GT.zip` from [homepage](https://rrc.cvc.uab.es/?ch=1&com=downloads) `Task 1.1: Text Localization (2013 edition)`.
|
||||
|
||||
```bash
|
||||
mkdir icdar2011 && cd icdar2011
|
||||
mkdir imgs && mkdir annotations
|
||||
|
||||
# Download ICDAR 2011
|
||||
wget https://rrc.cvc.uab.es/downloads/Challenge1_Training_Task12_Images.zip --no-check-certificate
|
||||
wget https://rrc.cvc.uab.es/downloads/Challenge1_Training_Task1_GT.zip --no-check-certificate
|
||||
wget https://rrc.cvc.uab.es/downloads/Challenge1_Test_Task12_Images.zip --no-check-certificate
|
||||
wget https://rrc.cvc.uab.es/downloads/Challenge1_Test_Task1_GT.zip --no-check-certificate
|
||||
|
||||
# For images
|
||||
unzip -q Challenge1_Training_Task12_Images.zip -d imgs/training
|
||||
unzip -q Challenge1_Test_Task12_Images.zip -d imgs/test
|
||||
# For annotations
|
||||
unzip -q Challenge1_Training_Task1_GT.zip -d annotations/training
|
||||
unzip -q Challenge1_Test_Task1_GT.zip -d annotations/test
|
||||
|
||||
rm Challenge1_Training_Task12_Images.zip && rm Challenge1_Test_Task12_Images.zip && rm Challenge1_Training_Task1_GT.zip && rm Challenge1_Test_Task1_GT.zip
|
||||
```
|
||||
|
||||
- Step 2: Generate `instances_training.json` and `instances_test.json` with the following command:
|
||||
|
||||
```bash
|
||||
python tools/data/textdet/ic11_converter.py PATH/TO/icdar2011 --nproc 4
|
||||
```
|
||||
|
||||
- After running the above codes, the directory structure should be as follows:
|
||||
|
||||
```text
|
||||
|── icdar2011
|
||||
│ ├── imgs
|
||||
│ ├── instances_test.json
|
||||
│ └── instances_training.json
|
||||
```
|
||||
|
||||
### ICDAR 2013 (Focused Scene Text)
|
||||
- Step1: Download `Challenge2_Training_Task12_Images.zip`, `Challenge2_Test_Task12_Images.zip`, `Challenge2_Training_Task1_GT.zip`, and `Challenge2_Test_Task1_GT.zip` from [homepage](https://rrc.cvc.uab.es/?ch=2&com=downloads) `Task 2.1: Text Localization (2013 edition)`.
|
||||
|
||||
```bash
|
||||
mkdir icdar2013 && cd icdar2013
|
||||
mkdir imgs && mkdir annotations
|
||||
|
||||
# Download ICDAR 2013
|
||||
wget https://rrc.cvc.uab.es/downloads/Challenge2_Training_Task12_Images.zip --no-check-certificate
|
||||
wget https://rrc.cvc.uab.es/downloads/Challenge2_Test_Task12_Images.zip --no-check-certificate
|
||||
wget https://rrc.cvc.uab.es/downloads/Challenge2_Training_Task1_GT.zip --no-check-certificate
|
||||
wget https://rrc.cvc.uab.es/downloads/Challenge2_Test_Task1_GT.zip --no-check-certificate
|
||||
|
||||
# For images
|
||||
unzip -q Challenge2_Training_Task12_Images.zip -d imgs/training
|
||||
unzip -q Challenge2_Test_Task12_Images.zip -d imgs/test
|
||||
# For annotations
|
||||
unzip -q Challenge2_Training_Task1_GT.zip -d annotations/training
|
||||
unzip -q Challenge2_Test_Task1_GT.zip -d annotations/test
|
||||
|
||||
rm Challenge2_Training_Task12_Images.zip && rm Challenge2_Test_Task12_Images.zip && rm Challenge2_Training_Task1_GT.zip && rm Challenge2_Test_Task1_GT.zip
|
||||
```
|
||||
|
||||
- Step 2: Generate `instances_training.json` and `instances_test.json` with the following command:
|
||||
|
||||
```bash
|
||||
python tools/data/textdet/ic13_converter.py PATH/TO/icdar2013 --nproc 4
|
||||
```
|
||||
|
||||
- After running the above codes, the directory structure should be as follows:
|
||||
|
||||
```text
|
||||
|── icdar2013
|
||||
│ ├── imgs
|
||||
│ ├── instances_test.json
|
||||
│ └── instances_training.json
|
||||
```
|
||||
|
||||
### SynthText
|
||||
|
||||
- Download [data.mdb](https://download.openmmlab.com/mmocr/data/synthtext/instances_training.lmdb/data.mdb) and [lock.mdb](https://download.openmmlab.com/mmocr/data/synthtext/instances_training.lmdb/lock.mdb) to `synthtext/instances_training.lmdb/`.
|
||||
@ -356,3 +439,179 @@ rm IIIT-CVid.zip
|
||||
```bash
|
||||
python tools/data/textdet/lv_converter.py PATH/TO/lv --nproc 4
|
||||
```
|
||||
|
||||
### IMGUR
|
||||
|
||||
- Step1: Run `download_imgur5k.py` to download images. You can merge [PR#5](https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset/pull/5) in your local repository to enable a **much faster** parallel execution of image download.
|
||||
|
||||
```bash
|
||||
mkdir imgur && cd imgur
|
||||
|
||||
git clone https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset.git
|
||||
|
||||
# Download images from imgur.com. This may take SEVERAL HOURS!
|
||||
python ./IMGUR5K-Handwriting-Dataset/download_imgur5k.py --dataset_info_dir ./IMGUR5K-Handwriting-Dataset/dataset_info/ --output_dir ./imgs
|
||||
|
||||
# For annotations
|
||||
mkdir annotations
|
||||
mv ./IMGUR5K-Handwriting-Dataset/dataset_info/*.json annotations
|
||||
|
||||
rm -rf IMGUR5K-Handwriting-Dataset
|
||||
```
|
||||
|
||||
- Step2: Generate `instances_train.json`, `instance_val.json` and `instances_test.json` with the following command:
|
||||
|
||||
```bash
|
||||
python tools/data/textdet/imgur_converter.py PATH/TO/imgur
|
||||
```
|
||||
|
||||
- After running the above codes, the directory structure should be as follows:
|
||||
|
||||
```
|
||||
|── imgur
|
||||
| ├── annotations
|
||||
│ ├── imgs
|
||||
│ ├── instances_test.json
|
||||
│ ├── instances_training.json
|
||||
│ └── instances_val.json
|
||||
```
|
||||
|
||||
### KAIST
|
||||
|
||||
- Step1: Complete download [KAIST_all.zip](http://www.iapr-tc11.org/mediawiki/index.php/KAIST_Scene_Text_Database) to `kaist/`.
|
||||
|
||||
```bash
|
||||
mkdir kaist && cd kaist
|
||||
mkdir imgs && mkdir annotations
|
||||
|
||||
# Download KAIST dataset
|
||||
wget http://www.iapr-tc11.org/dataset/KAIST_SceneText/KAIST_all.zip
|
||||
unzip -q KAIST_all.zip
|
||||
|
||||
rm KAIST_all.zip
|
||||
```
|
||||
|
||||
- Step2: Extract zips:
|
||||
|
||||
```bash
|
||||
python tools/data/common/extract_kaist.py PATH/TO/kaist
|
||||
```
|
||||
|
||||
- Step3: Generate `instances_training.json` and `instances_val.json` (optional) with following command:
|
||||
|
||||
```bash
|
||||
# Since KAIST does not provide an official split, you can split the dataset by adding --val-ratio 0.2
|
||||
python tools/data/textdet/kaist_converter.py PATH/TO/kaist --nproc 4
|
||||
```
|
||||
|
||||
- After running the above codes, the directory structure should be as follows:
|
||||
|
||||
```text
|
||||
|── kaist
|
||||
| ├── annotations
|
||||
│ ├── imgs
|
||||
│ ├── instances_training.json
|
||||
│ └── instances_val.json (optional)
|
||||
```
|
||||
|
||||
### MTWI
|
||||
|
||||
- Step1: Download `mtwi_2018_train.zip` from [homepage](https://tianchi.aliyun.com/competition/entrance/231685/information?lang=en-us).
|
||||
|
||||
```bash
|
||||
mkdir mtwi && cd mtwi
|
||||
|
||||
unzip -q mtwi_2018_train.zip
|
||||
mv image_train imgs && mv txt_train annotations
|
||||
|
||||
rm mtwi_2018_train.zip
|
||||
```
|
||||
|
||||
- Step2: Generate `instances_training.json` and `instance_val.json` (optional) with the following command:
|
||||
|
||||
```bash
|
||||
# Annotations of MTWI test split is not publicly available, split a validation
|
||||
# set by adding --val-ratio 0.2
|
||||
python tools/data/textdet/mtwi_converter.py PATH/TO/mtwi --nproc 4
|
||||
```
|
||||
|
||||
- After running the above codes, the directory structure should be as follows:
|
||||
|
||||
```text
|
||||
|── mtwi
|
||||
| ├── annotations
|
||||
│ ├── imgs
|
||||
│ ├── instances_training.json
|
||||
│ └── instances_val.json (optional)
|
||||
```
|
||||
|
||||
### COCO Text v2
|
||||
|
||||
- Step1: Download image [train2014.zip](http://images.cocodataset.org/zips/train2014.zip) and annotation [cocotext.v2.zip](https://github.com/bgshih/cocotext/releases/download/dl/cocotext.v2.zip) to `coco_textv2/`.
|
||||
|
||||
```bash
|
||||
mkdir coco_textv2 && cd coco_textv2
|
||||
mkdir annotations
|
||||
|
||||
# Download COCO Text v2 dataset
|
||||
wget http://images.cocodataset.org/zips/train2014.zip
|
||||
wget https://github.com/bgshih/cocotext/releases/download/dl/cocotext.v2.zip
|
||||
unzip -q train2014.zip && unzip -q cocotext.v2.zip
|
||||
|
||||
mv train2014 imgs && mv cocotext.v2.json annotations/
|
||||
|
||||
rm train2014.zip && rm -rf cocotext.v2.zip
|
||||
```
|
||||
|
||||
- Step2: Generate `instances_training.json` and `instances_val.json` with the following command:
|
||||
|
||||
```bash
|
||||
python tools/data/textdet/cocotext_converter.py PATH/TO/coco_textv2
|
||||
```
|
||||
|
||||
- After running the above codes, the directory structure should be as follows:
|
||||
|
||||
```text
|
||||
|── coco_textv2
|
||||
| ├── annotations
|
||||
│ ├── imgs
|
||||
│ ├── instances_training.json
|
||||
│ └── instances_val.json
|
||||
```
|
||||
|
||||
### ReCTS
|
||||
|
||||
- Step1: Download [ReCTS.zip](https://datasets.cvc.uab.es/rrc/ReCTS.zip) to `rects/` from the [homepage](https://rrc.cvc.uab.es/?ch=12&com=downloads).
|
||||
|
||||
```bash
|
||||
mkdir rects && cd rects
|
||||
|
||||
# Download ReCTS dataset
|
||||
# You can also find Google Drive link on the dataset homepage
|
||||
wget https://datasets.cvc.uab.es/rrc/ReCTS.zip --no-check-certificate
|
||||
unzip -q ReCTS.zip
|
||||
|
||||
mv img imgs && mv gt_unicode annotations
|
||||
|
||||
rm ReCTS.zip && rm -rf gt
|
||||
```
|
||||
|
||||
- Step2: Generate `instances_training.json` and `instances_val.json` (optional) with following command:
|
||||
|
||||
```bash
|
||||
# Annotations of ReCTS test split is not publicly available, split a validation
|
||||
# set by adding --val-ratio 0.2
|
||||
# Add --preserve-vertical to preserve vertical texts for training, otherwise
|
||||
# vertical images will be filtered and stored in PATH/TO/rects/ignores
|
||||
python tools/data/textdet/rects_converter.py PATH/TO/rects --nproc 4 --val-ratio 0.2
|
||||
```
|
||||
|
||||
- After running the above codes, the directory structure should be as follows:
|
||||
|
||||
```text
|
||||
|── rects
|
||||
| ├── annotations
|
||||
│ ├── imgs
|
||||
│ ├── instances_val.json (optional)
|
||||
│ └── instances_training.json
|
||||
```
|
||||
|
@ -89,8 +89,8 @@
|
||||
| :-------------------: | :---------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------: |
|
||||
| | | training | test |
|
||||
| coco_text | [homepage](https://rrc.cvc.uab.es/?ch=5&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/coco_text/train_label.txt) | - | |
|
||||
| icdar_2011 | [homepage](http://www.cvc.uab.es/icdar2011competition/?com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt) | - | |
|
||||
| icdar_2013 | [homepage](https://rrc.cvc.uab.es/?ch=2&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/train_label.txt) | [test_label_1015.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/test_label_1015.txt) | |
|
||||
| ICDAR2011 | [homepage](https://rrc.cvc.uab.es/?ch=1) | - | - | |
|
||||
| ICDAR2013 | [homepage](https://rrc.cvc.uab.es/?ch=2) | - | - | - |
|
||||
| icdar_2015 | [homepage](https://rrc.cvc.uab.es/?ch=4&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt) | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/test_label.txt) | |
|
||||
| IIIT5K | [homepage](http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/IIIT5K.html) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/train_label.txt) | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/test_label.txt) | |
|
||||
| ct80 | [homepage](http://cs-chan.com/downloads_CUTE80_dataset.html) | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/ct80/test_label.txt) | |
|
||||
@ -103,24 +103,101 @@
|
||||
| Totaltext | [homepage](https://github.com/cs-chan/Total-Text-Dataset) | - | - | |
|
||||
| OpenVINO | [Open Images](https://github.com/cvdfoundation/open-images-dataset) | [annotations](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text) | [annotations](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text) | |
|
||||
| FUNSD | [homepage](https://guillaumejaume.github.io/FUNSD/) | - | - | |
|
||||
| DeText | [homepage](https://rrc.cvc.uab.es/?ch=9) | - | - | |
|
||||
| DeText | [homepage](https://rrc.cvc.uab.es/?ch=9) | - | - | |
|
||||
| NAF | [homepage](https://github.com/herobd/NAF_dataset) | - | - | - |
|
||||
| SROIE | [homepage](https://rrc.cvc.uab.es/?ch=13) | - | - | - |
|
||||
| Lecture Video DB | [homepage](https://cvit.iiit.ac.in/research/projects/cvit-projects/lecturevideodb) | - | - | - |
|
||||
| IMGUR | [homepage](https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset) | - | - | - |
|
||||
| KAIST | [homepage](http://www.iapr-tc11.org/mediawiki/index.php/KAIST_Scene_Text_Database) | - | - | - |
|
||||
| MTWI | [homepage](https://tianchi.aliyun.com/competition/entrance/231685/information?lang=en-us) | - | - | - |
|
||||
| COCO Text v2 | [homepage](https://bgshih.github.io/cocotext/) | - | - | - |
|
||||
| ReCTS | [homepage](https://rrc.cvc.uab.es/?ch=12) | - | - | - |
|
||||
|
||||
|
||||
(*) Since the official homepage is unavailable now, we provide an alternative for quick reference. However, we do not guarantee the correctness of the dataset.
|
||||
|
||||
## Preparation Steps
|
||||
|
||||
### ICDAR 2013
|
||||
### ICDAR 2011 (Born-Digital Images)
|
||||
- Step1: Download `Challenge1_Training_Task3_Images_GT.zip`, `Challenge1_Test_Task3_Images.zip`, and `Challenge1_Test_Task3_GT.txt` from [homepage](https://rrc.cvc.uab.es/?ch=1&com=downloads) `Task 1.3: Word Recognition (2013 edition)`.
|
||||
|
||||
```bash
|
||||
mkdir icdar2011 && cd icdar2011
|
||||
mkdir annotations
|
||||
|
||||
# Download ICDAR 2011
|
||||
wget https://rrc.cvc.uab.es/downloads/Challenge1_Training_Task3_Images_GT.zip --no-check-certificate
|
||||
wget https://rrc.cvc.uab.es/downloads/Challenge1_Test_Task3_Images.zip --no-check-certificate
|
||||
wget https://rrc.cvc.uab.es/downloads/Challenge1_Test_Task3_GT.txt --no-check-certificate
|
||||
|
||||
# For images
|
||||
mkdir crops
|
||||
unzip -q Challenge1_Training_Task3_Images_GT.zip -d crops/train
|
||||
unzip -q Challenge1_Test_Task3_Images.zip -d crops/test
|
||||
|
||||
# For annotations
|
||||
mv Challenge1_Test_Task3_GT.txt annotations && mv train/gt.txt annotations/Challenge1_Train_Task3_GT.txt
|
||||
```
|
||||
|
||||
- Step2: Convert original annotations to `Train_label.jsonl` and `Test_label.jsonl` with the following command:
|
||||
|
||||
```bash
|
||||
python tools/data/textrecog/ic11_converter.py PATH/TO/icdar2011
|
||||
```
|
||||
|
||||
- After running the above codes, the directory structure should be as follows:
|
||||
|
||||
```text
|
||||
├── icdar2011
|
||||
│ ├── crops
|
||||
│ ├── train_label.jsonl
|
||||
│ └── test_label.jsonl
|
||||
```
|
||||
|
||||
### ICDAR 2013 (Focused Scene Text)
|
||||
- Step1: Download `Challenge2_Training_Task3_Images_GT.zip`, `Challenge2_Test_Task3_Images.zip`, and `Challenge2_Test_Task3_GT.txt` from [homepage](https://rrc.cvc.uab.es/?ch=2&com=downloads) `Task 2.3: Word Recognition (2013 edition)`.
|
||||
|
||||
```bash
|
||||
mkdir icdar2013 && cd icdar2013
|
||||
mkdir annotations
|
||||
|
||||
# Download ICDAR 2013
|
||||
wget https://rrc.cvc.uab.es/downloads/Challenge2_Training_Task3_Images_GT.zip --no-check-certificate
|
||||
wget https://rrc.cvc.uab.es/downloads/Challenge2_Test_Task3_Images.zip --no-check-certificate
|
||||
wget https://rrc.cvc.uab.es/downloads/Challenge2_Test_Task3_GT.txt --no-check-certificate
|
||||
|
||||
# For images
|
||||
mkdir crops
|
||||
unzip -q Challenge2_Training_Task3_Images_GT.zip -d crops/train
|
||||
unzip -q Challenge2_Test_Task3_Images.zip -d crops/test
|
||||
# For annotations
|
||||
mv Challenge2_Test_Task3_GT.txt annotations && mv crops/train/gt.txt annotations/Challenge2_Train_Task3_GT.txt
|
||||
|
||||
rm Challenge2_Training_Task3_Images_GT.zip && rm Challenge2_Test_Task3_Images.zip
|
||||
```
|
||||
|
||||
- Step 2: Generate `Train_label.jsonl` and `Test_label.jsonl` with the following command:
|
||||
|
||||
```bash
|
||||
python tools/data/textrecog/ic13_converter.py PATH/TO/icdar2013
|
||||
```
|
||||
|
||||
- After running the above codes, the directory structure should be as follows:
|
||||
|
||||
```text
|
||||
├── icdar2013
|
||||
│ ├── crops
|
||||
│ ├── train_label.jsonl
|
||||
│ └── test_label.jsonl
|
||||
```
|
||||
|
||||
### ICDAR 2013 [Deprecated]
|
||||
- Step1: Download `Challenge2_Test_Task3_Images.zip` and `Challenge2_Training_Task3_Images_GT.zip` from [homepage](https://rrc.cvc.uab.es/?ch=2&com=downloads)
|
||||
- Step2: Download [test_label_1015.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/test_label_1015.txt) and [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/train_label.txt)
|
||||
|
||||
### ICDAR 2015
|
||||
- Step1: Download `ch4_training_word_images_gt.zip` and `ch4_test_word_images_gt.zip` from [homepage](https://rrc.cvc.uab.es/?ch=4&com=downloads)
|
||||
- Step2: Download [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt) and [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/test_label.txt)
|
||||
|
||||
### IIIT5K
|
||||
- Step1: Download `IIIT5K-Word_V3.0.tar.gz` from [homepage](http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/IIIT5K.html)
|
||||
- Step2: Download [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/train_label.txt) and [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/test_label.txt)
|
||||
@ -303,33 +380,6 @@ python tools/data/utils/txt2lmdb.py -i data/mixture/Syn90k/label.txt -o data/mix
|
||||
python tools/data/textrecog/openvino_converter.py /path/to/openvino 4
|
||||
```
|
||||
|
||||
### FUNSD
|
||||
|
||||
- Step1: Download [dataset.zip](https://guillaumejaume.github.io/FUNSD/dataset.zip) to `funsd/`.
|
||||
|
||||
```bash
|
||||
mkdir funsd && cd funsd
|
||||
|
||||
# Download FUNSD dataset
|
||||
wget https://guillaumejaume.github.io/FUNSD/dataset.zip
|
||||
unzip -q dataset.zip
|
||||
|
||||
# For images
|
||||
mv dataset/training_data/images imgs && mv dataset/testing_data/images/* imgs/
|
||||
|
||||
# For annotations
|
||||
mkdir annotations
|
||||
mv dataset/training_data/annotations annotations/training && mv dataset/testing_data/annotations annotations/test
|
||||
|
||||
rm dataset.zip && rm -rf dataset
|
||||
```
|
||||
|
||||
- Step2: Generate `train_label.txt` and `test_label.txt` and crop images using 4 processes with following command (add `--preserve-vertical` if you wish to preserve the images containing vertical texts):
|
||||
|
||||
```bash
|
||||
python tools/data/textrecog/funsd_converter.py PATH/TO/funsd --nproc 4
|
||||
```
|
||||
|
||||
### DeText
|
||||
|
||||
- Step1: Download `ch9_training_images.zip`, `ch9_training_localization_transcription_gt.zip`, `ch9_validation_images.zip`, and `ch9_validation_localization_transcription_gt.zip` from **Task 3: End to End** on the [homepage](https://rrc.cvc.uab.es/?ch=9).
|
||||
@ -471,3 +521,210 @@ rm IIIT-CVid.zip
|
||||
```bash
|
||||
python tools/data/textdreog/lv_converter.py PATH/TO/lv
|
||||
```
|
||||
|
||||
### FUNSD
|
||||
|
||||
- Step1: Download [dataset.zip](https://guillaumejaume.github.io/FUNSD/dataset.zip) to `funsd/`.
|
||||
|
||||
```bash
|
||||
mkdir funsd && cd funsd
|
||||
|
||||
# Download FUNSD dataset
|
||||
wget https://guillaumejaume.github.io/FUNSD/dataset.zip
|
||||
unzip -q dataset.zip
|
||||
|
||||
# For images
|
||||
mv dataset/training_data/images imgs && mv dataset/testing_data/images/* imgs/
|
||||
|
||||
# For annotations
|
||||
mkdir annotations
|
||||
mv dataset/training_data/annotations annotations/training && mv dataset/testing_data/annotations annotations/test
|
||||
|
||||
rm dataset.zip && rm -rf dataset
|
||||
```
|
||||
|
||||
- Step2: Generate `train_label.txt` and `test_label.txt` and crop images using 4 processes with following command (add `--preserve-vertical` if you wish to preserve the images containing vertical texts):
|
||||
|
||||
```bash
|
||||
python tools/data/textrecog/funsd_converter.py PATH/TO/funsd --nproc 4
|
||||
```
|
||||
|
||||
### IMGUR
|
||||
|
||||
- Step1: Run `download_imgur5k.py` to download images. You can merge [PR#5](https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset/pull/5) in your local repository to enable a **much faster** parallel execution of image download.
|
||||
|
||||
```bash
|
||||
mkdir imgur && cd imgur
|
||||
|
||||
git clone https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset.git
|
||||
|
||||
# Download images from imgur.com. This may take SEVERAL HOURS!
|
||||
python ./IMGUR5K-Handwriting-Dataset/download_imgur5k.py --dataset_info_dir ./IMGUR5K-Handwriting-Dataset/dataset_info/ --output_dir ./imgs
|
||||
|
||||
# For annotations
|
||||
mkdir annotations
|
||||
mv ./IMGUR5K-Handwriting-Dataset/dataset_info/*.json annotations
|
||||
|
||||
rm -rf IMGUR5K-Handwriting-Dataset
|
||||
```
|
||||
|
||||
- Step2: Generate `train_label.txt`, `val_label.txt` and `test_label.txt` and crop images with the following command:
|
||||
|
||||
```bash
|
||||
python tools/data/textrecog/imgur_converter.py PATH/TO/imgur
|
||||
```
|
||||
|
||||
- After running the above codes, the directory structure should be as follows:
|
||||
|
||||
```text
|
||||
├── imgur
|
||||
│ ├── crops
|
||||
│ ├── train_label.jsonl
|
||||
│ ├── test_label.jsonl
|
||||
│ └── val_label.jsonl
|
||||
```
|
||||
|
||||
### KAIST
|
||||
|
||||
- Step1: Complete download [KAIST_all.zip](http://www.iapr-tc11.org/mediawiki/index.php/KAIST_Scene_Text_Database) to `kaist/`.
|
||||
|
||||
```bash
|
||||
mkdir kaist && cd kaist
|
||||
mkdir imgs && mkdir annotations
|
||||
|
||||
# Download KAIST dataset
|
||||
wget http://www.iapr-tc11.org/dataset/KAIST_SceneText/KAIST_all.zip
|
||||
unzip -q KAIST_all.zip
|
||||
|
||||
rm KAIST_all.zip
|
||||
```
|
||||
|
||||
- Step2: Extract zips:
|
||||
|
||||
```bash
|
||||
python tools/data/common/extract_kaist.py PATH/TO/kaist
|
||||
```
|
||||
|
||||
- Step3: Generate `train_label.jsonl` and `val_label.jsonl` (optional) with following command:
|
||||
|
||||
```bash
|
||||
# Since KAIST does not provide an official split, you can split the dataset by adding --val-ratio 0.2
|
||||
# Add --preserve-vertical to preserve vertical texts for training, otherwise
|
||||
# vertical images will be filtered and stored in PATH/TO/kaist/ignores
|
||||
python tools/data/textrecog/kaist_converter.py PATH/TO/kaist --nproc 4
|
||||
```
|
||||
|
||||
- After running the above codes, the directory structure should be as follows:
|
||||
|
||||
```text
|
||||
├── kaist
|
||||
│ ├── crops
|
||||
│ ├── ignores
|
||||
│ ├── train_label.jsonl
|
||||
│ └── val_label.jsonl (optional)
|
||||
```
|
||||
|
||||
### MTWI
|
||||
|
||||
- Step1: Download `mtwi_2018_train.zip` from [homepage](https://tianchi.aliyun.com/competition/entrance/231685/information?lang=en-us).
|
||||
|
||||
```bash
|
||||
mkdir mtwi && cd mtwi
|
||||
|
||||
unzip -q mtwi_2018_train.zip
|
||||
mv image_train imgs && mv txt_train annotations
|
||||
|
||||
rm mtwi_2018_train.zip
|
||||
```
|
||||
|
||||
- Step2: Generate `train_label.jsonl` and `val_label.jsonl` (optional) with the following command:
|
||||
|
||||
```bash
|
||||
# Annotations of MTWI test split is not publicly available, split a validation
|
||||
# set by adding --val-ratio 0.2
|
||||
# Add --preserve-vertical to preserve vertical texts for training, otherwise
|
||||
# vertical images will be filtered and stored in PATH/TO/mtwi/ignores
|
||||
python tools/data/textrecog/mtwi_converter.py PATH/TO/mtwi --nproc 4
|
||||
```
|
||||
|
||||
- After running the above codes, the directory structure should be as follows:
|
||||
|
||||
```text
|
||||
├── mtwi
|
||||
│ ├── crops
|
||||
│ ├── train_label.jsonl
|
||||
│ ├── val_label.jsonl (optional)
|
||||
```
|
||||
|
||||
### COCO Text v2
|
||||
|
||||
- Step1: Download image [train2014.zip](http://images.cocodataset.org/zips/train2014.zip) and annotation [cocotext.v2.zip](https://github.com/bgshih/cocotext/releases/download/dl/cocotext.v2.zip) to `coco_textv2/`.
|
||||
|
||||
```bash
|
||||
mkdir coco_textv2 && cd coco_textv2
|
||||
mkdir annotations
|
||||
|
||||
# Download COCO Text v2 dataset
|
||||
wget http://images.cocodataset.org/zips/train2014.zip
|
||||
wget https://github.com/bgshih/cocotext/releases/download/dl/cocotext.v2.zip
|
||||
unzip -q train2014.zip && unzip -q cocotext.v2.zip
|
||||
|
||||
mv train2014 imgs && mv cocotext.v2.json annotations/
|
||||
|
||||
rm train2014.zip && rm -rf cocotext.v2.zip
|
||||
```
|
||||
|
||||
- Step2: Generate `train_label.jsonl` and `val_label.jsonl` with the following command:
|
||||
|
||||
```bash
|
||||
# Add --preserve-vertical to preserve vertical texts for training, otherwise
|
||||
# vertical images will be filtered and stored in PATH/TO/mtwi/ignores
|
||||
python tools/data/textrecog/cocotext_converter.py PATH/TO/coco_textv2 --nproc 4
|
||||
```
|
||||
|
||||
- After running the above codes, the directory structure should be as follows:
|
||||
|
||||
```text
|
||||
├── coco_textv2
|
||||
│ ├── crops
|
||||
│ ├── ignores
|
||||
│ ├── train_label.jsonl
|
||||
│ └── val_label.jsonl
|
||||
```
|
||||
|
||||
### ReCTS
|
||||
|
||||
- Step1: Download [ReCTS.zip](https://datasets.cvc.uab.es/rrc/ReCTS.zip) to `rects/` from the [homepage](https://rrc.cvc.uab.es/?ch=12&com=downloads).
|
||||
|
||||
```bash
|
||||
mkdir rects && cd rects
|
||||
|
||||
# Download ReCTS dataset
|
||||
# You can also find Google Drive link on the dataset homepage
|
||||
wget https://datasets.cvc.uab.es/rrc/ReCTS.zip --no-check-certificate
|
||||
unzip -q ReCTS.zip
|
||||
|
||||
mv img imgs && mv gt_unicode annotations
|
||||
|
||||
rm ReCTS.zip -f && rm -rf gt
|
||||
```
|
||||
|
||||
- Step2: Generate `train_label.jsonl` and `val_label.jsonl` (optional) with the following command:
|
||||
|
||||
```bash
|
||||
# Annotations of ReCTS test split is not publicly available, split a validation
|
||||
# set by adding --val-ratio 0.2
|
||||
# Add --preserve-vertical to preserve vertical texts for training, otherwise
|
||||
# vertical images will be filtered and stored in PATH/TO/rects/ignores
|
||||
python tools/data/textrecog/rects_converter.py PATH/TO/rects --nproc 4
|
||||
```
|
||||
|
||||
- After running the above codes, the directory structure should be as follows:
|
||||
|
||||
```text
|
||||
├── rects
|
||||
│ ├── crops
|
||||
│ ├── ignores
|
||||
│ ├── train_label.jsonl
|
||||
│ └── val_label.jsonl (optional)
|
||||
```
|
||||
|
Loading…
x
Reference in New Issue
Block a user