[Refactor] Refactor TextRecogVisualizer

pull/1178/head
jiangqing.vendor 2022-05-26 02:32:32 +00:00 committed by gaotongxiao
parent 7e7a526f37
commit c78be99f6b
4 changed files with 213 additions and 1 deletions

View File

@ -2,4 +2,4 @@
skip = *.ipynb
count =
quiet-level = 3
ignore-words-list = convertor,convertors,formating,nin,wan,datas,hist
ignore-words-list = convertor,convertors,formating,nin,wan,datas,hist,ned

View File

@ -0,0 +1,4 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .textrecog_visualizer import TextRecogLocalVisualizer
__all__ = ['TextRecogLocalVisualizer']

View File

@ -0,0 +1,140 @@
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, Optional, Tuple, Union
import cv2
import mmcv
import numpy as np
from mmengine import Visualizer
from mmocr.core import TextRecogDataSample
from mmocr.registry import VISUALIZERS
@VISUALIZERS.register_module()
class TextRecogLocalVisualizer(Visualizer):
"""MMOCR Text Detection Local Visualizer.
Args:
name (str): Name of the instance. Defaults to 'visualizer'.
image (np.ndarray, optional): The origin image to draw. The format
should be RGB. Defaults to None.
vis_backends (list, optional): Visual backend config list.
Defaults to None.
save_dir (str, optional): Save file dir for all storage backends.
If it is None, the backend storage will not save any data.
gt_color (str or tuple[int, int, int]): Colors of GT text. The tuple of
color should be in RGB order. Or using an abbreviation of color,
such as `'g'` for `'green'`. Defaults to 'g'.
pred_color (str or tuple[int, int, int]): Colors of Predicted text.
The tuple of color should be in RGB order. Or using an abbreviation
of color, such as `'r'` for `'red'`. Defaults to 'r'.
"""
def __init__(self,
name: str = 'visualizer',
image: Optional[np.ndarray] = None,
vis_backends: Optional[Dict] = None,
save_dir: Optional[str] = None,
gt_color: Optional[Union[str, Tuple[int, int, int]]] = 'g',
pred_color: Optional[Union[str, Tuple[int, int,
int]]] = 'r') -> None:
super().__init__(
name=name,
image=image,
vis_backends=vis_backends,
save_dir=save_dir)
self.gt_color = gt_color
self.pred_color = pred_color
def add_datasample(self,
name: str,
image: np.ndarray,
gt_sample: Optional['TextRecogDataSample'] = None,
pred_sample: Optional['TextRecogDataSample'] = None,
draw_gt: bool = True,
draw_pred: bool = True,
show: bool = False,
wait_time: int = 0,
out_file: Optional[str] = None,
step=0) -> None:
"""Visualize datasample and save to all backends.
- If GT and prediction are plotted at the same time, they are
displayed in a stitched image where the left image is the
ground truth and the right image is the prediction.
- If ``show`` is True, all storage backends are ignored, and
the images will be displayed in a local window.
- If ``out_file`` is specified, the drawn image will be
saved to ``out_file``. This is usually used when the display
is not available.
Args:
name (str): The image title. Defaults to 'image'.
image (np.ndarray): The image to draw.
gt_sample (:obj:`TextRecogDataSample`, optional): GT
TextRecogDataSample. Defaults to None.
pred_sample (:obj:`TextRecogDataSample`, optional): Predicted
TextRecogDataSample. Defaults to None.
draw_gt (bool): Whether to draw GT TextRecogDataSample.
Defaults to True.
draw_pred (bool): Whether to draw Predicted TextRecogDataSample.
Defaults to True.
show (bool): Whether to display the drawn image. Defaults to False.
wait_time (float): The interval of show (s). Defaults to 0.
out_file (str): Path to output file. Defaults to None.
step (int): Global step value to record. Defaults to 0.
"""
gt_img_data = None
pred_img_data = None
height, width = image.shape[:2]
resize_height = 64
resize_width = int(1.0 * width / height * resize_height)
image = cv2.resize(image, (resize_width, resize_height))
if image.ndim == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
if draw_gt and gt_sample is not None and 'gt_text' in gt_sample:
gt_text = gt_sample.gt_text.item
empty_img = np.full_like(image, 255)
self.set_image(empty_img)
font_size = 0.5 * resize_width / len(gt_text)
self.draw_texts(
gt_text,
np.array([resize_width / 2, resize_height / 2]),
colors=self.gt_color,
font_sizes=font_size,
vertical_alignments='center',
horizontal_alignments='center')
gt_text_image = self.get_image()
gt_img_data = np.concatenate((image, gt_text_image), axis=0)
if (draw_pred and pred_sample is not None
and 'pred_text' in pred_sample):
pred_text = pred_sample.pred_text.item
empty_img = np.full_like(image, 255)
self.set_image(empty_img)
font_size = 0.5 * resize_width / len(pred_text)
self.draw_texts(
pred_text,
np.array([resize_width / 2, resize_height / 2]),
colors=self.pred_color,
font_sizes=font_size,
vertical_alignments='center',
horizontal_alignments='center')
pred_text_image = self.get_image()
pred_img_data = np.concatenate((image, pred_text_image), axis=0)
if gt_img_data is not None and pred_img_data is not None:
drawn_img = np.concatenate((gt_img_data, pred_text_image), axis=0)
elif gt_img_data is not None:
drawn_img = gt_img_data
else:
drawn_img = pred_img_data
if show:
self.show(drawn_img, win_name=name, wait_time=wait_time)
else:
self.add_image(name, drawn_img, step)
if out_file is not None:
mmcv.imwrite(drawn_img[..., ::-1], out_file)

View File

@ -0,0 +1,68 @@
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import tempfile
import unittest
import cv2
import numpy as np
from mmengine.data import LabelData
from mmocr.core import TextRecogDataSample
from mmocr.core.visualization import TextRecogLocalVisualizer
class TestTextDetLocalVisualizer(unittest.TestCase):
def test_add_datasample(self):
h, w = 64, 128
image = np.random.randint(0, 256, size=(h, w, 3)).astype('uint8')
# test gt_text
gt_recog_data_sample = TextRecogDataSample()
img_meta = dict(img_shape=(12, 10, 3))
gt_text = LabelData(metainfo=img_meta)
gt_text.item = 'mmocr'
gt_recog_data_sample.gt_text = gt_text
recog_local_visualizer = TextRecogLocalVisualizer()
recog_local_visualizer.add_datasample('image', image,
gt_recog_data_sample)
# test gt_text and pred_text
pred_recog_data_sample = TextRecogDataSample()
pred_text = LabelData(metainfo=img_meta)
pred_text.item = 'MMOCR'
pred_recog_data_sample.pred_text = pred_text
with tempfile.TemporaryDirectory() as tmp_dir:
# test out
out_file = osp.join(tmp_dir, 'out_file.jpg')
# draw_gt = True + gt_sample
recog_local_visualizer.add_datasample(
'image', image, gt_recog_data_sample, out_file=out_file)
self._assert_image_and_shape(out_file, (h * 2, w, 3))
# draw_gt = True + gt_sample + pred_sample
recog_local_visualizer.add_datasample(
'image',
image,
gt_recog_data_sample,
pred_recog_data_sample,
out_file=out_file)
self._assert_image_and_shape(out_file, (h * 3, w, 3))
# draw_gt = False + gt_sample + pred_sample
recog_local_visualizer.add_datasample(
'image',
image,
gt_recog_data_sample,
pred_recog_data_sample,
draw_gt=False,
out_file=out_file)
self._assert_image_and_shape(out_file, (h * 2, w, 3))
def _assert_image_and_shape(self, out_file, out_shape):
self.assertTrue(osp.exists(out_file))
drawn_img = cv2.imread(out_file)
self.assertTrue(drawn_img.shape == out_shape)