mirror of https://github.com/open-mmlab/mmocr.git
fix #60: update readme
parent
0b2aa3aec6
commit
c88126f0d2
|
@ -43,12 +43,12 @@ This project is released under the [Apache 2.0 license](LICENSE).
|
|||
|
||||
## Changelog
|
||||
|
||||
v1.0 was released on 07/04/2021.
|
||||
v0.1.0 was released on 07/04/2021.
|
||||
|
||||
|
||||
## Benchmark and Model Zoo
|
||||
|
||||
Please refer to [modelzoo.md](modelzoo.md) for more details.
|
||||
Please refer to [modelzoo.md](https://mmocr.readthedocs.io/en/latest/modelzoo.html) for more details.
|
||||
|
||||
## Installation
|
||||
|
||||
|
|
|
@ -54,8 +54,10 @@
|
|||
| Methods | Backbone || Regular Text |||| Irregular Text ||download|
|
||||
| :-------: | :---------: | :----: | :----: | :--: | :-: | :--: | :------: | :--: | :-----: |
|
||||
| | | IIIT5K | SVT | IC13 | | IC15 | SVTP | CT80 |
|
||||
| [NRTR](/configs/textrecog/nrtr/nrtr_r31_academic.py) | R31-1/16-1/8 | 93.9 | 90.0| 93.5 | | 74.5 | 78.5 | 86.5 | [model](https://download.openmmlab.com/mmocr/textrecog/nrtr/nrtr_r31_academic_20210406-954db95e.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/nrtr/20210406_010150.log.json) |
|
||||
| [NRTR](/configs/textrecog/nrtr/nrtr_r31_1by16_1by8_academic.py) | R31-1/16-1/8 | 93.9 | 90.0| 93.5 | | 74.5 | 78.5 | 86.5 | [model](https://download.openmmlab.com/mmocr/textrecog/nrtr/nrtr_r31_academic_20210406-954db95e.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/nrtr/20210406_010150.log.json) |
|
||||
| [NRTR](/configs/textrecog/nrtr/nrtr_r31_1by8_1by4_academic.py) | R31-1/8-1/4 | 94.7 | 87.5| 93.3 | | 75.1 | 78.9 | 87.9 | [model](https://download.openmmlab.com/mmocr/textrecog/nrtr/nrtr_r31_1by8_1by4_academic_20210406-ce16e7cc.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/nrtr/20210406_160845.log.json) |
|
||||
|
||||
**Notes:**
|
||||
|
||||
- `R31-1/16-1/8` means the height of feature from backbone is 1/16 of input image, where 1/8 for width.
|
||||
- `R31-1/8-1/4` means the height of feature from backbone is 1/8 of input image, where 1/4 for width.
|
||||
|
|
|
@ -1,112 +0,0 @@
|
|||
_base_ = [
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/recog_models/nrtr.py',
|
||||
]
|
||||
|
||||
# optimizer
|
||||
optimizer = dict(type='Adam', lr=1e-3)
|
||||
optimizer_config = dict(grad_clip=None)
|
||||
# learning policy
|
||||
lr_config = dict(policy='step', step=[3, 4])
|
||||
total_epochs = 6
|
||||
|
||||
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='ColorJitter', brightness=0.4, contrast=0.4, saturation=0.4),
|
||||
dict(
|
||||
type='ResizeOCR',
|
||||
height=32,
|
||||
min_width=32,
|
||||
max_width=100,
|
||||
keep_aspect_ratio=False),
|
||||
dict(type='ToTensorOCR'),
|
||||
dict(type='NormalizeOCR', **img_norm_cfg),
|
||||
dict(
|
||||
type='Collect',
|
||||
keys=['img'],
|
||||
meta_keys=[
|
||||
'filename', 'ori_shape', 'img_shape', 'text', 'valid_ratio'
|
||||
]),
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(
|
||||
type='MultiRotateAugOCR',
|
||||
rotate_degrees=[0, 90, 270],
|
||||
transforms=[
|
||||
dict(
|
||||
type='ResizeOCR',
|
||||
height=32,
|
||||
min_width=32,
|
||||
max_width=100,
|
||||
keep_aspect_ratio=False),
|
||||
dict(type='ToTensorOCR'),
|
||||
dict(type='NormalizeOCR', **img_norm_cfg),
|
||||
dict(
|
||||
type='Collect',
|
||||
keys=['img'],
|
||||
meta_keys=[
|
||||
'filename', 'ori_shape', 'img_shape', 'valid_ratio'
|
||||
]),
|
||||
])
|
||||
]
|
||||
|
||||
dataset_type = 'OCRDataset'
|
||||
img_prefix = 'tests/data/ocr_toy_dataset/imgs'
|
||||
train_anno_file1 = 'tests/data/ocr_toy_dataset/label.txt'
|
||||
train1 = dict(
|
||||
type=dataset_type,
|
||||
img_prefix=img_prefix,
|
||||
ann_file=train_anno_file1,
|
||||
loader=dict(
|
||||
type='HardDiskLoader',
|
||||
repeat=100,
|
||||
parser=dict(
|
||||
type='LineStrParser',
|
||||
keys=['filename', 'text'],
|
||||
keys_idx=[0, 1],
|
||||
separator=' ')),
|
||||
pipeline=train_pipeline,
|
||||
test_mode=False)
|
||||
|
||||
train_anno_file2 = 'tests/data/ocr_toy_dataset/label.lmdb'
|
||||
train2 = dict(
|
||||
type=dataset_type,
|
||||
img_prefix=img_prefix,
|
||||
ann_file=train_anno_file2,
|
||||
loader=dict(
|
||||
type='LmdbLoader',
|
||||
repeat=100,
|
||||
parser=dict(
|
||||
type='LineStrParser',
|
||||
keys=['filename', 'text'],
|
||||
keys_idx=[0, 1],
|
||||
separator=' ')),
|
||||
pipeline=train_pipeline,
|
||||
test_mode=False)
|
||||
|
||||
test_anno_file1 = 'tests/data/ocr_toy_dataset/label.lmdb'
|
||||
test = dict(
|
||||
type=dataset_type,
|
||||
img_prefix=img_prefix,
|
||||
ann_file=test_anno_file1,
|
||||
loader=dict(
|
||||
type='LmdbLoader',
|
||||
repeat=1,
|
||||
parser=dict(
|
||||
type='LineStrParser',
|
||||
keys=['filename', 'text'],
|
||||
keys_idx=[0, 1],
|
||||
separator=' ')),
|
||||
pipeline=test_pipeline,
|
||||
test_mode=True)
|
||||
|
||||
data = dict(
|
||||
samples_per_gpu=16,
|
||||
workers_per_gpu=2,
|
||||
train=dict(type='ConcatDataset', datasets=[train1, train2]),
|
||||
val=dict(type='ConcatDataset', datasets=[test]),
|
||||
test=dict(type='ConcatDataset', datasets=[test]))
|
||||
|
||||
evaluation = dict(interval=1, metric='acc')
|
|
@ -0,0 +1,163 @@
|
|||
_base_ = [
|
||||
'../../_base_/default_runtime.py', '../../_base_/recog_models/nrtr.py'
|
||||
]
|
||||
|
||||
label_convertor = dict(
|
||||
type='AttnConvertor', dict_type='DICT90', with_unknown=True)
|
||||
|
||||
model = dict(
|
||||
type='NRTR',
|
||||
backbone=dict(
|
||||
type='ResNet31OCR',
|
||||
layers=[1, 2, 5, 3],
|
||||
channels=[32, 64, 128, 256, 512, 512],
|
||||
stage4_pool_cfg=dict(kernel_size=(2, 1), stride=(2, 1)),
|
||||
last_stage_pool=False),
|
||||
encoder=dict(type='TFEncoder'),
|
||||
decoder=dict(type='TFDecoder'),
|
||||
loss=dict(type='TFLoss'),
|
||||
label_convertor=label_convertor,
|
||||
max_seq_len=40)
|
||||
|
||||
# optimizer
|
||||
optimizer = dict(type='Adam', lr=1e-3)
|
||||
optimizer_config = dict(grad_clip=None)
|
||||
# learning policy
|
||||
lr_config = dict(policy='step', step=[3, 4])
|
||||
total_epochs = 6
|
||||
|
||||
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(
|
||||
type='ResizeOCR',
|
||||
height=32,
|
||||
min_width=32,
|
||||
max_width=160,
|
||||
keep_aspect_ratio=True,
|
||||
width_downsample_ratio=0.25),
|
||||
dict(type='ToTensorOCR'),
|
||||
dict(type='NormalizeOCR', **img_norm_cfg),
|
||||
dict(
|
||||
type='Collect',
|
||||
keys=['img'],
|
||||
meta_keys=[
|
||||
'filename', 'ori_shape', 'img_shape', 'text', 'valid_ratio'
|
||||
]),
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(
|
||||
type='MultiRotateAugOCR',
|
||||
rotate_degrees=[0, 90, 270],
|
||||
transforms=[
|
||||
dict(
|
||||
type='ResizeOCR',
|
||||
height=32,
|
||||
min_width=32,
|
||||
max_width=160,
|
||||
keep_aspect_ratio=True,
|
||||
width_downsample_ratio=0.25),
|
||||
dict(type='ToTensorOCR'),
|
||||
dict(type='NormalizeOCR', **img_norm_cfg),
|
||||
dict(
|
||||
type='Collect',
|
||||
keys=['img'],
|
||||
meta_keys=[
|
||||
'filename', 'ori_shape', 'img_shape', 'valid_ratio'
|
||||
]),
|
||||
])
|
||||
]
|
||||
|
||||
dataset_type = 'OCRDataset'
|
||||
|
||||
train_prefix = 'data/mixture/'
|
||||
|
||||
train_img_prefix1 = train_prefix + \
|
||||
'SynthText/synthtext/SynthText_patch_horizontal'
|
||||
train_img_prefix2 = train_prefix + 'Syn90k/mnt/ramdisk/max/90kDICT32px'
|
||||
|
||||
train_ann_file1 = train_prefix + 'SynthText/label.lmdb',
|
||||
train_ann_file2 = train_prefix + 'Syn90k/label.lmdb'
|
||||
|
||||
train1 = dict(
|
||||
type=dataset_type,
|
||||
img_prefix=train_img_prefix1,
|
||||
ann_file=train_ann_file1,
|
||||
loader=dict(
|
||||
type='LmdbLoader',
|
||||
repeat=1,
|
||||
parser=dict(
|
||||
type='LineStrParser',
|
||||
keys=['filename', 'text'],
|
||||
keys_idx=[0, 1],
|
||||
separator=' ')),
|
||||
pipeline=train_pipeline,
|
||||
test_mode=False)
|
||||
|
||||
train2 = {key: value for key, value in train1.items()}
|
||||
train2['img_prefix'] = train_img_prefix2
|
||||
train2['ann_file'] = train_ann_file2
|
||||
|
||||
test_prefix = 'data/mixture/'
|
||||
test_img_prefix1 = test_prefix + 'IIIT5K/'
|
||||
test_img_prefix2 = test_prefix + 'svt/'
|
||||
test_img_prefix3 = test_prefix + 'icdar_2013/'
|
||||
test_img_prefix4 = test_prefix + 'icdar_2015/'
|
||||
test_img_prefix5 = test_prefix + 'svtp/'
|
||||
test_img_prefix6 = test_prefix + 'ct80/'
|
||||
|
||||
test_ann_file1 = test_prefix + 'IIIT5K/test_label.txt'
|
||||
test_ann_file2 = test_prefix + 'svt/test_label.txt'
|
||||
test_ann_file3 = test_prefix + 'icdar_2013/test_label_1015.txt'
|
||||
test_ann_file4 = test_prefix + 'icdar_2015/test_label.txt'
|
||||
test_ann_file5 = test_prefix + 'svtp/test_label.txt'
|
||||
test_ann_file6 = test_prefix + 'ct80/test_label.txt'
|
||||
|
||||
test1 = dict(
|
||||
type=dataset_type,
|
||||
img_prefix=test_img_prefix1,
|
||||
ann_file=test_ann_file1,
|
||||
loader=dict(
|
||||
type='HardDiskLoader',
|
||||
repeat=1,
|
||||
parser=dict(
|
||||
type='LineStrParser',
|
||||
keys=['filename', 'text'],
|
||||
keys_idx=[0, 1],
|
||||
separator=' ')),
|
||||
pipeline=test_pipeline,
|
||||
test_mode=True)
|
||||
|
||||
test2 = {key: value for key, value in test1.items()}
|
||||
test2['img_prefix'] = test_img_prefix2
|
||||
test2['ann_file'] = test_ann_file2
|
||||
|
||||
test3 = {key: value for key, value in test1.items()}
|
||||
test3['img_prefix'] = test_img_prefix3
|
||||
test3['ann_file'] = test_ann_file3
|
||||
|
||||
test4 = {key: value for key, value in test1.items()}
|
||||
test4['img_prefix'] = test_img_prefix4
|
||||
test4['ann_file'] = test_ann_file4
|
||||
|
||||
test5 = {key: value for key, value in test1.items()}
|
||||
test5['img_prefix'] = test_img_prefix5
|
||||
test5['ann_file'] = test_ann_file5
|
||||
|
||||
test6 = {key: value for key, value in test1.items()}
|
||||
test6['img_prefix'] = test_img_prefix6
|
||||
test6['ann_file'] = test_ann_file6
|
||||
|
||||
data = dict(
|
||||
samples_per_gpu=128,
|
||||
workers_per_gpu=4,
|
||||
train=dict(type='ConcatDataset', datasets=[train1, train2]),
|
||||
val=dict(
|
||||
type='ConcatDataset',
|
||||
datasets=[test1, test2, test3, test4, test5, test6]),
|
||||
test=dict(
|
||||
type='ConcatDataset',
|
||||
datasets=[test1, test2, test3, test4, test5, test6]))
|
||||
|
||||
evaluation = dict(interval=1, metric='acc')
|
Loading…
Reference in New Issue