[Config] SAR config

This commit is contained in:
liukuikun 2022-06-24 04:47:20 +00:00 committed by gaotongxiao
parent 41d9c741cd
commit ca35c78e69
3 changed files with 153 additions and 62 deletions

View File

@ -1,8 +1,15 @@
label_convertor = dict(
type='AttnConvertor', dict_type='DICT90', with_unknown=True)
dictionary = dict(
type='Dictionary',
dict_file='dicts/english_digits_symbols.txt',
with_start=True,
with_end=True,
same_start_end=True,
with_padding=True,
with_unknown=True)
model = dict(
type='SARNet',
preprocess_cfg=dict(mean=[127, 127, 127], std=[127, 127, 127]),
backbone=dict(type='ResNet31OCR'),
encoder=dict(
type='SAREncoder',
@ -18,7 +25,8 @@ model = dict(
dec_gru=False,
pred_dropout=0.1,
d_k=512,
pred_concat=True),
loss=dict(type='SARLoss'),
label_convertor=label_convertor,
pred_concat=True,
postprocessor=dict(type='AttentionPostprocessor'),
loss=dict(type='CELoss', ignore_first_char=True, reduction='mean')),
dictionary=dictionary,
max_seq_len=30)

View File

@ -1,33 +1,75 @@
_base_ = [
'../../_base_/default_runtime.py', '../../_base_/recog_models/sar.py',
'../../_base_/default_runtime.py',
'../../_base_/recog_models/sar.py',
'../../_base_/schedules/schedule_adam_step_5e.py',
'../../_base_/recog_pipelines/sar_pipeline.py',
'../../_base_/recog_datasets/ST_SA_MJ_real_train.py',
'../../_base_/recog_datasets/academic_test.py'
]
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
dataset_type = 'OCRDataset'
data_root = 'data/recog/'
file_client_args = dict(backend='disk')
train_pipeline = {{_base_.train_pipeline}}
test_pipeline = {{_base_.test_pipeline}}
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='LoadOCRAnnotations', with_text=True),
dict(
type='RescaleToHeight',
height=48,
min_width=48,
max_width=160,
width_divisor=4),
dict(type='PadToWidth', width=160),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
]
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type='UniformConcatDataset',
datasets=train_list,
pipeline=train_pipeline),
val=dict(
type='UniformConcatDataset',
datasets=test_list,
pipeline=test_pipeline),
test=dict(
type='UniformConcatDataset',
datasets=test_list,
test_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(
type='RescaleToHeight',
height=48,
min_width=48,
max_width=160,
width_divisor=4),
dict(type='PadToWidth', width=160),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio',
'instances'))
]
train_dataloader = dict(
batch_size=64,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='train_label.json',
pipeline=train_pipeline))
val_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='test_label.json',
test_mode=True,
pipeline=test_pipeline))
test_dataloader = val_dataloader
evaluation = dict(interval=1, metric='acc')
val_evaluator = [
dict(
type='WordMetric', mode=['exact', 'ignore_case',
'ignore_case_symbol']),
dict(type='CharMetric')
]
test_evaluator = val_evaluator
visualizer = dict(type='TextRecogLocalVisualizer', name='visualizer')

View File

@ -1,20 +1,80 @@
_base_ = [
'../../_base_/default_runtime.py',
'../../_base_/recog_models/sar.py',
'../../_base_/schedules/schedule_adam_step_5e.py',
'../../_base_/recog_pipelines/sar_pipeline.py',
'../../_base_/recog_datasets/ST_SA_MJ_real_train.py',
'../../_base_/recog_datasets/academic_test.py'
]
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
dataset_type = 'OCRDataset'
data_root = 'data/recog/'
file_client_args = dict(backend='disk')
train_pipeline = {{_base_.train_pipeline}}
test_pipeline = {{_base_.test_pipeline}}
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='LoadOCRAnnotations', with_text=True),
dict(type='Resize', scale=(160, 48), keep_ratio=False),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
]
label_convertor = dict(
type='AttnConvertor', dict_type='DICT90', with_unknown=True)
test_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(
type='RescaleToHeight',
height=48,
min_width=48,
max_width=160,
width_divisor=4),
dict(type='PadToWidth', width=160),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio',
'instances'))
]
train_dataloader = dict(
batch_size=64,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='train_label.json',
pipeline=train_pipeline))
val_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='test_label.json',
test_mode=True,
pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = [
dict(
type='WordMetric', mode=['exact', 'ignore_case',
'ignore_case_symbol']),
dict(type='CharMetric')
]
test_evaluator = val_evaluator
visualizer = dict(type='TextRecogLocalVisualizer', name='visualizer')
dictionary = dict(
type='Dictionary',
dict_file='dicts/english_digits_symbols.txt',
with_start=True,
with_end=True,
same_start_end=True,
with_padding=True,
with_unknown=True)
model = dict(
type='SARNet',
backbone=dict(type='ResNet31OCR'),
@ -32,27 +92,8 @@ model = dict(
dec_gru=False,
pred_dropout=0.1,
d_k=512,
pred_concat=True),
loss=dict(type='SARLoss'),
label_convertor=label_convertor,
pred_concat=True,
postprocessor=dict(type='AttentionPostprocessor'),
loss=dict(type='CELoss', ignore_first_char=True, reduction='mean')),
dictionary=dictionary,
max_seq_len=30)
data = dict(
samples_per_gpu=64,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type='UniformConcatDataset',
datasets=train_list,
pipeline=train_pipeline),
val=dict(
type='UniformConcatDataset',
datasets=test_list,
pipeline=test_pipeline),
test=dict(
type='UniformConcatDataset',
datasets=test_list,
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='acc')