mirror of https://github.com/open-mmlab/mmocr.git
Add metafiles (#179)
* add metafiles * add metafiles * add metafiles * fix metafile errors * fix metafiles * Update metafile.yml Co-authored-by: Hongbin Sun <hongbin306@gmail.com>pull/180/head
parent
ee700e94cd
commit
cc27d8254b
|
@ -0,0 +1,36 @@
|
|||
Collections:
|
||||
- Name: SDMGR
|
||||
Metadata:
|
||||
Training Data: KIEDataset
|
||||
Training Techniques:
|
||||
- Adam
|
||||
Training Resources: 1x NVIDIA 1080Ti GPU
|
||||
Architecture:
|
||||
- UNet
|
||||
Paper: https://arxiv.org/abs/2103.14470.pdf
|
||||
README: configs/kie/sdmgr/README.md
|
||||
|
||||
Models:
|
||||
- Name: sdmgr_unet16_60e_wildreceipt
|
||||
In Collection: SDMGR
|
||||
Config: configs/kie/sdmgr/sdmgr_unet16_60e_wildreceipt.py
|
||||
Metadata:
|
||||
Training Data: wildreceipt
|
||||
Results:
|
||||
- Task: Key Information Extraction
|
||||
Dataset: wildreceipt
|
||||
Metrics:
|
||||
macro_f1: 0.876
|
||||
Weights: https://download.openmmlab.com/mmocr/kie/sdmgr/sdmgr_unet16_60e_wildreceipt_20210405-16a47642.pth
|
||||
|
||||
- Name: sdmgr_novisual_60e_wildreceipt
|
||||
In Collection: SDMGR
|
||||
Config: configs/kie/sdmgr/sdmgr_novisual_60e_wildreceipt.py
|
||||
Metadata:
|
||||
Training Data: wildreceipt
|
||||
Results:
|
||||
- Task: Key Information Extraction
|
||||
Dataset: wildreceipt
|
||||
Metrics:
|
||||
macro_f1: 0.864
|
||||
Weights: https://download.openmmlab.com/mmocr/kie/sdmgr/sdmgr_novisual_60e_wildreceipt_20210405-07bc26ad.pth
|
|
@ -0,0 +1,37 @@
|
|||
Collections:
|
||||
- Name: DBNet
|
||||
Metadata:
|
||||
Training Data: ICDAR2015
|
||||
Training Techniques:
|
||||
- SGD with Momentum
|
||||
Training Resources: 8x NVIDIA V100 GPUs
|
||||
Architecture:
|
||||
- ResNet
|
||||
- FPNC
|
||||
Paper: https://arxiv.org/pdf/1911.08947.pdf
|
||||
README: configs/textdet/dbnet/README.md
|
||||
|
||||
Models:
|
||||
- Name: dbnet_r18_fpnc_1200e_icdar2015
|
||||
In Collection: DBNet
|
||||
Config: configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py
|
||||
Metadata:
|
||||
Training Data: ICDAR2015
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
Dataset: ICDAR2015
|
||||
Metrics:
|
||||
hmean-iou: 0.795
|
||||
Weights: https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597.pth
|
||||
|
||||
- Name: dbnet_r50dcnv2_fpnc_1200e_icdar2015
|
||||
In Collection: DBNet
|
||||
Config: configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py
|
||||
Metadata:
|
||||
Training Data: ICDAR2015
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
Dataset: ICDAR2015
|
||||
Metrics:
|
||||
hmean-iou: 0.830
|
||||
Weights: https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_r50dcnv2_fpnc_sbn_1200e_icdar2015_20210325-91cef9af.pth
|
|
@ -0,0 +1,49 @@
|
|||
Collections:
|
||||
- Name: Mask R-CNN
|
||||
Metadata:
|
||||
Training Data: ICDARDataset
|
||||
Training Techniques:
|
||||
- SGD with Momentum
|
||||
Training Resources: 8x NVIDIA 1080Ti GPUs
|
||||
Architecture:
|
||||
- RoI Align
|
||||
- RPN
|
||||
Paper: https://arxiv.org/pdf/1703.06870.pdf
|
||||
README: configs/textdet/maskrcnn/README.md
|
||||
|
||||
Models:
|
||||
- Name: mask_rcnn_r50_fpn_160e_ctw1500
|
||||
In Collection: Mask R-CNN
|
||||
Config: configs/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_ctw1500.py
|
||||
Metadata:
|
||||
Training Data: CTW1500
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
Dataset: CTW1500
|
||||
Metrics:
|
||||
hmean: 0.732
|
||||
Weights: https://download.openmmlab.com/mmocr/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_ctw1500_20210219-96497a76.pth
|
||||
|
||||
- Name: mask_rcnn_r50_fpn_160e_icdar2015
|
||||
In Collection: Mask R-CNN
|
||||
Config: configs/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2015.py
|
||||
Metadata:
|
||||
Training Data: ICDAR2015
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
Dataset: ICDAR2015
|
||||
Metrics:
|
||||
hmean: 0.825
|
||||
Weights: https://download.openmmlab.com/mmocr/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2015_20210219-8eb340a3.pth
|
||||
|
||||
- Name: mask_rcnn_r50_fpn_160e_icdar2017
|
||||
In Collection: Mask R-CNN
|
||||
Config: configs/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2017.py
|
||||
Metadata:
|
||||
Training Data: ICDAR2017
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
Dataset: ICDAR2017
|
||||
Metrics:
|
||||
hmean: 0.789
|
||||
Weights: https://download.openmmlab.com/mmocr/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2017_20210218-c6ec3ebb.pth
|
|
@ -0,0 +1,49 @@
|
|||
Collections:
|
||||
- Name: PANet
|
||||
Metadata:
|
||||
Training Data: ICDARDataset
|
||||
Training Techniques:
|
||||
- Adam
|
||||
Training Resources: 8x NVIDIA V100 GPUs
|
||||
Architecture:
|
||||
- ResNet
|
||||
- FPEM_FFM
|
||||
Paper: https://arxiv.org/pdf/1803.01534.pdf
|
||||
README: configs/textdet/panet/README.md
|
||||
|
||||
Models:
|
||||
- Name: panet_r18_fpem_ffm_600e_ctw1500
|
||||
In Collection: PANet
|
||||
Config: configs/textdet/panet/panet_r18_fpem_ffm_600e_ctw1500.py
|
||||
Metadata:
|
||||
Training Data: CTW1500
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
Dataset: CTW1500
|
||||
Metrics:
|
||||
hmean-iou: 0.806
|
||||
Weights: https://download.openmmlab.com/mmocr/textdet/panet/panet_r18_fpem_ffm_sbn_600e_ctw1500_20210219-3b3a9aa3.pth
|
||||
|
||||
- Name: panet_r18_fpem_ffm_600e_icdar2015
|
||||
In Collection: PANet
|
||||
Config: configs/textdet/panet/panet_r18_fpem_ffm_600e_icdar2015.py
|
||||
Metadata:
|
||||
Training Data: ICDAR2015
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
Dataset: ICDAR2015
|
||||
Metrics:
|
||||
hmean-iou: 0.791
|
||||
Weights: https://download.openmmlab.com/mmocr/textdet/panet/panet_r18_fpem_ffm_sbn_600e_icdar2015_20210219-42dbe46a.pth
|
||||
|
||||
- Name: panet_r50_fpem_ffm_600e_icdar2017
|
||||
In Collection: PANet
|
||||
Config: configs/textdet/panet/panet_r50_fpem_ffm_600e_icdar2017.py
|
||||
Metadata:
|
||||
Training Data: ICDAR2017
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
Dataset: ICDAR2017
|
||||
Metrics:
|
||||
hmean-iou:
|
||||
Weights:
|
|
@ -0,0 +1,49 @@
|
|||
Collections:
|
||||
- Name: PSENet
|
||||
Metadata:
|
||||
Training Data: ICDARDataset
|
||||
Training Techniques:
|
||||
- Adam
|
||||
Training Resources: 8x NVIDIA 1080Ti GPUs
|
||||
Architecture:
|
||||
- ResNet
|
||||
- FPNF
|
||||
Paper: https://arxiv.org/abs/1806.02559.pdf
|
||||
README: configs/textdet/psenet/README.md
|
||||
|
||||
Models:
|
||||
- Name: psenet_r50_fpnf_600e_ctw1500
|
||||
In Collection: PSENet
|
||||
Config: configs/textdet/psenet/psenet_r50_fpnf_600e_ctw1500.py
|
||||
Metadata:
|
||||
Training Data: CTW1500
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
Dataset: CTW1500
|
||||
Metrics:
|
||||
hmean-iou: 0.784
|
||||
Weights: https://download.openmmlab.com/mmocr/textdet/psenet/psenet_r50_fpnf_600e_ctw1500_20210401-216fed50.pth
|
||||
|
||||
- Name: psenet_r50_fpnf_600e_icdar2015
|
||||
In Collection: PSENet
|
||||
Config: configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py
|
||||
Metadata:
|
||||
Training Data: ICDAR2015
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
Dataset: ICDAR2015
|
||||
Metrics:
|
||||
hmean-iou: 0.807
|
||||
Weights: https://download.openmmlab.com/mmocr/textdet/psenet/psenet_r50_fpnf_600e_icdar2015-c6131f0d.pth
|
||||
|
||||
- Name: psenet_r50_fpnf_600e_icdar2015_with_pretrain
|
||||
In Collection: PSENet
|
||||
Config: configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py
|
||||
Metadata:
|
||||
Training Data: ICDAR2017
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
Dataset: ICDAR2017
|
||||
Metrics:
|
||||
hmean-iou: 0.847
|
||||
Weights: https://download.openmmlab.com/mmocr/textdet/psenet/psenet_r50_fpnf_600e_icdar2015_pretrain-eefd8fe6.pth
|
|
@ -0,0 +1,25 @@
|
|||
Collections:
|
||||
- Name: TextSnake
|
||||
Metadata:
|
||||
Training Data: ICDARDataset
|
||||
Training Techniques:
|
||||
- SGD with Momentum
|
||||
Training Resources: 8x NVIDIA V100 GPUs
|
||||
Architecture:
|
||||
- ResNet
|
||||
- FPN_UNET
|
||||
Paper: https://arxiv.org/abs/1807.01544.pdf
|
||||
README: configs/textdet/textsnake/README.md
|
||||
|
||||
Models:
|
||||
- Name: textsnake_r50_fpn_unet_1200e_ctw1500
|
||||
In Collection: TextSnake
|
||||
Config: configs/textdet/textsnake/textsnake_r50_fpn_unet_1200e_ctw1500.py
|
||||
Metadata:
|
||||
Training Data: CTW1500
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
Dataset: CTW1500
|
||||
Metrics:
|
||||
hmean-iou: 0.817
|
||||
Weights: https://download.openmmlab.com/mmocr/textdet/textsnake/textsnake_r50_fpn_unet_1200e_ctw1500-27f65b64.pth
|
|
@ -0,0 +1,31 @@
|
|||
Collections:
|
||||
- Name: CRNN
|
||||
Metadata:
|
||||
Training Data: OCRDataset
|
||||
Training Techniques:
|
||||
- Adadelta
|
||||
Training Resources: 4x NVIDIA 1080Ti GPUs
|
||||
Architecture:
|
||||
- VeryDeepVgg
|
||||
- CRNNDecoder
|
||||
Paper: https://arxiv.org/pdf/1507.05717.pdf
|
||||
README: configs/textrecog/crnn/README.md
|
||||
|
||||
Models:
|
||||
- Name: crnn_academic_dataset
|
||||
In Collection: CRNN
|
||||
Config: configs/textrecog/crnn/crnn_academic_dataset.py
|
||||
Metadata:
|
||||
Training Data: Syn90k
|
||||
Results:
|
||||
- Task: Regular Text Recognition
|
||||
Dataset:
|
||||
- IIIT5K
|
||||
- SVT
|
||||
- ICDAR2013
|
||||
Metrics:
|
||||
acc:
|
||||
- 80.5
|
||||
- 81.5
|
||||
- 86.5
|
||||
Weights: https://download.openmmlab.com/mmocr/textrecog/crnn/crnn_academic-a723a1c5.pth
|
|
@ -0,0 +1,74 @@
|
|||
Collections:
|
||||
- Name: NRTR
|
||||
Metadata:
|
||||
Training Data: OCRDataset
|
||||
Training Techniques:
|
||||
- Adam
|
||||
Training Resources: 64x NVIDIA 1080Ti GPUs
|
||||
Architecture:
|
||||
- ResNet31OCR
|
||||
- TFEncoder
|
||||
- TFDecoder
|
||||
Paper: https://arxiv.org/pdf/1806.00926.pdf
|
||||
README: configs/textrecog/nrtr/README.md
|
||||
|
||||
Models:
|
||||
- Name: nrtr_r31_1by16_1by8_academic
|
||||
In Collection: NRTR
|
||||
Config: configs/textrecog/nrtr/nrtr_r31_1by16_1by8_academic.py
|
||||
Metadata:
|
||||
Training Data:
|
||||
- SynthText
|
||||
- Syn90k
|
||||
Results:
|
||||
- Task: Regular Text Recognition
|
||||
Dataset:
|
||||
- IIIT5K
|
||||
- SVT
|
||||
- ICDAR2013
|
||||
Metrics:
|
||||
acc:
|
||||
- 93.9
|
||||
- 90.0
|
||||
- 93.5
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset:
|
||||
- ICDAR2015
|
||||
- SVTP
|
||||
- CT80
|
||||
Metrics:
|
||||
acc:
|
||||
- 74.5
|
||||
- 78.5
|
||||
- 86.5
|
||||
Weights: https://download.openmmlab.com/mmocr/textrecog/nrtr/nrtr_r31_academic_20210406-954db95e.pth
|
||||
|
||||
- Name: nrtr_r31_1by8_1by4_academic
|
||||
In Collection: NRTR
|
||||
Config: configs/textrecog/nrtr/nrtr_r31_1by8_1by4_academic.py
|
||||
Metadata:
|
||||
Training Data:
|
||||
- SynthText
|
||||
- Syn90k
|
||||
Results:
|
||||
- Task: Regular Text Recognition
|
||||
Dataset:
|
||||
- IIIT5K
|
||||
- SVT
|
||||
- ICDAR2013
|
||||
Metrics:
|
||||
acc:
|
||||
- 94.7
|
||||
- 87.5
|
||||
- 93.3
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset:
|
||||
- ICDAR2015
|
||||
- SVTP
|
||||
- CT80
|
||||
Metrics:
|
||||
acc:
|
||||
- 75.1
|
||||
- 78.9
|
||||
- 87.9
|
||||
Weights: https://download.openmmlab.com/mmocr/textrecog/nrtr/nrtr_r31_1by8_1by4_academic_20210406-ce16e7cc.pth
|
|
@ -0,0 +1,50 @@
|
|||
Collections:
|
||||
- Name: RobustScanner
|
||||
Metadata:
|
||||
Training Data: OCRDataset
|
||||
Training Techniques:
|
||||
- Adam
|
||||
Training Resources: 16x NVIDIA 1080Ti GPUs
|
||||
Architecture:
|
||||
- ResNet31OCR
|
||||
- ChannelReductionEncoder
|
||||
- RobustScannerDecoder
|
||||
Paper: https://arxiv.org/pdf/2007.07542.pdf
|
||||
README: configs/textrecog/robust_scanner/README.md
|
||||
|
||||
Models:
|
||||
- Name: robustscanner_r31_academic
|
||||
In Collection: RobustScanner
|
||||
Config: configs/textrecog/robust_scanner/robustscanner_r31_academic.py
|
||||
Metadata:
|
||||
Training Data:
|
||||
- ICDAR2011
|
||||
- ICDAR2013
|
||||
- ICDAR2015
|
||||
- COCO text
|
||||
- IIIT5K
|
||||
- SynthText
|
||||
- SynthAdd
|
||||
- Syn90k
|
||||
Results:
|
||||
- Task: Regular Text Recognition
|
||||
Dataset:
|
||||
- IIIT5K
|
||||
- SVT
|
||||
- ICDAR2013
|
||||
Metrics:
|
||||
acc:
|
||||
- 95.1
|
||||
- 89.2
|
||||
- 93.1
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset:
|
||||
- ICDAR2015
|
||||
- SVTP
|
||||
- CT80
|
||||
Metrics:
|
||||
acc:
|
||||
- 77.8
|
||||
- 80.3
|
||||
- 90.3
|
||||
Weights: https://download.openmmlab.com/mmocr/textrecog/robustscanner/robustscanner_r31_academic-5f05874f.pth
|
|
@ -0,0 +1,98 @@
|
|||
Collections:
|
||||
- Name: SAR
|
||||
Metadata:
|
||||
Training Data: OCRDataset
|
||||
Training Techniques:
|
||||
- Adam
|
||||
Training Resources: 48x NVIDIA 1080Ti GPUs
|
||||
Architecture:
|
||||
- ResNet31OCR
|
||||
- SAREncoder
|
||||
- ParallelSARDecoder
|
||||
Paper: https://arxiv.org/pdf/1811.00751.pdf
|
||||
README: configs/textrecog/sar/README.md
|
||||
|
||||
Models:
|
||||
- Name: sar_r31_parallel_decoder_academic
|
||||
In Collection: SAR
|
||||
Config: configs/textrecog/sar/sar_r31_parallel_decoder_academic.py
|
||||
Metadata:
|
||||
Training Data:
|
||||
- ICDAR2011
|
||||
- ICDAR2013
|
||||
- ICDAR2015
|
||||
- COCO text
|
||||
- IIIT5K
|
||||
- SynthText
|
||||
- SynthAdd
|
||||
- Syn90k
|
||||
Results:
|
||||
- Task: Regular Text Recognition
|
||||
Dataset:
|
||||
- IIIT5K
|
||||
- SVT
|
||||
- ICDAR2013
|
||||
Metrics:
|
||||
acc:
|
||||
- 95.0
|
||||
- 89.6
|
||||
- 93.7
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset:
|
||||
- ICDAR2015
|
||||
- SVTP
|
||||
- CT80
|
||||
Metrics:
|
||||
acc:
|
||||
- 79.0
|
||||
- 82.2
|
||||
- 88.9
|
||||
Weights: https://download.openmmlab.com/mmocr/textrecog/crnn/crnn_academic-a723a1c5.pth
|
||||
|
||||
- Name: sar_r31_sequential_decoder_academic
|
||||
In Collection: SAR
|
||||
Config: configs/textrecog/sar/sar_r31_sequential_decoder_academic.py
|
||||
Metadata:
|
||||
Training Data:
|
||||
- ICDAR2011
|
||||
- ICDAR2013
|
||||
- ICDAR2015
|
||||
- COCO text
|
||||
- IIIT5K
|
||||
- SynthText
|
||||
- SynthAdd
|
||||
- Syn90k
|
||||
Results:
|
||||
- Task: Regular Text Recognition
|
||||
Dataset:
|
||||
- IIIT5K
|
||||
- SVT
|
||||
- ICDAR2013
|
||||
Metrics:
|
||||
acc:
|
||||
- 95.2
|
||||
- 88.7
|
||||
- 92.4
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset:
|
||||
- ICDAR2015
|
||||
- SVTP
|
||||
- CT80
|
||||
Metrics:
|
||||
acc:
|
||||
- 78.2
|
||||
- 81.9
|
||||
- 89.6
|
||||
Weights: https://download.openmmlab.com/mmocr/textrecog/sar/sar_r31_sequential_decoder_academic-d06c9a8e.pth
|
||||
|
||||
- Name: sar_r31_parallel_decoder_chinese
|
||||
In Collection: SAR
|
||||
Config: configs/textrecog/sar/sar_r31_parallel_decoder_chinese.py
|
||||
Metadata:
|
||||
Training Data:
|
||||
Results:
|
||||
- Task:
|
||||
Dataset:
|
||||
Metrics:
|
||||
acc:
|
||||
Weights: https://download.openmmlab.com/mmocr/textrecog/sar/sar_r31_parallel_decoder_chineseocr_20210507-b4be8214.pth
|
|
@ -0,0 +1,35 @@
|
|||
Collections:
|
||||
- Name: SEG
|
||||
Metadata:
|
||||
Training Data: mixture
|
||||
Training Techniques:
|
||||
- Adam
|
||||
Training Resources: 4x NVIDIA 1080Ti GPUs
|
||||
Architecture:
|
||||
- ResNet31OCR
|
||||
- FPNOCR
|
||||
Paper:
|
||||
README: configs/textrecog/seg/README.md
|
||||
|
||||
Models:
|
||||
- Name: seg_r31_1by16_fpnocr_academic
|
||||
In Collection: SEG
|
||||
Config: configs/textrecog/seg/seg_r31_1by16_fpnocr_academic.py
|
||||
Metadata:
|
||||
Training Data: SynthText
|
||||
Results:
|
||||
- Task: Regular Text Recognition
|
||||
Dataset:
|
||||
- IIIT5K
|
||||
- SVT
|
||||
- ICDAR2013
|
||||
Metrics:
|
||||
acc:
|
||||
- 90.9
|
||||
- 81.8
|
||||
- 90.7
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset: CT80
|
||||
Metrics:
|
||||
acc: 80.9
|
||||
Weights: https://download.openmmlab.com/mmocr/textrecog/seg/seg_r31_1by16_fpnocr_academic-72235b11.pth
|
|
@ -0,0 +1,45 @@
|
|||
Collections:
|
||||
- Name: TPS
|
||||
Metadata:
|
||||
Training Data: OCRDataset
|
||||
Training Techniques:
|
||||
- Adadelta
|
||||
Training Resources: 4x NVIDIA 1080Ti GPUs
|
||||
Architecture:
|
||||
- TPSPreprocessor
|
||||
- VeryDeepVgg
|
||||
- CRNNDecoder
|
||||
- CTCLoss
|
||||
Paper:
|
||||
- https://arxiv.org/pdf/1507.05717.pdf
|
||||
- https://arxiv.org/pdf/1603.03915.pdf
|
||||
README: configs/textrecog/tps/README.md
|
||||
|
||||
Models:
|
||||
- Name: crnn_tps_academic_dataset
|
||||
In Collection: TPS-CRNN
|
||||
Config: configs/textrecog/tps/crnn_tps_academic_dataset.py
|
||||
Metadata:
|
||||
Training Data: Syn90k
|
||||
Results:
|
||||
- Task: Regular Text Recognition
|
||||
Dataset:
|
||||
- IIIT5K
|
||||
- SVT
|
||||
- ICDAR2013
|
||||
Metrics:
|
||||
acc:
|
||||
- 80.8
|
||||
- 81.3
|
||||
- 85.0
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset:
|
||||
- ICDAR2015
|
||||
- SVTP
|
||||
- CT80
|
||||
Metrics:
|
||||
acc:
|
||||
- 59.6
|
||||
- 68.1
|
||||
- 53.8
|
||||
Weights: https://download.openmmlab.com/mmocr/textrecog/tps/crnn_tps_academic_dataset_20210510-d221a905.pth
|
|
@ -0,0 +1,13 @@
|
|||
Import:
|
||||
- configs/textdet/dbnet/metafile.yml
|
||||
- configs/textdet/maskrcnn/metafile.yml
|
||||
- configs/textdet/panet/metafile.yml
|
||||
- configs/textdet/psenet/metafile.yml
|
||||
- configs/textdet/textsnake/metafile.yml
|
||||
- configs/textrecog/crnn/metafile.yml
|
||||
- configs/textrecog/nrtr/metafile.yml
|
||||
- configs/textrecog/robust_scanner/metafile.yml
|
||||
- configs/textrecog/sar/metafile.yml
|
||||
- configs/textrecog/seg/metafile.yml
|
||||
- configs/textrecog/tps/metafile.yml
|
||||
- configs/kie/sdmgr/metafile.yml
|
Loading…
Reference in New Issue