mirror of https://github.com/open-mmlab/mmocr.git
parent
c91b028772
commit
dbb346afed
|
@ -1 +1,107 @@
|
|||
# Visualization
|
||||
|
||||
Before reading this tutorial, it is recommended to read MMEngine's [Visualization](https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/visualization.md) documentation to get a first glimpse of the `Visualizer` definition and usage.
|
||||
|
||||
In brief, the [`Visualizer`](mmengine.visualization.Visualizer) is implemented in MMEngine to meet the daily visualization needs, and contains three main functions:
|
||||
|
||||
- Implement common drawing APIs, such as [`draw_bboxes`](mmengine.visualization.Visualizer.draw_bboxes) which implements bounding box drawing functions, [`draw_lines`](mmengine.visualization.Visualizer.draw_lines) implements the line drawing function.
|
||||
- Support writing visualization results, learning rate curves, loss function curves, and verification accuracy curves to various backends, including local disks and common deep learning training logging tools such as [TensorBoard](https://www.tensorflow.org/tensorboard) and [Wandb](https://wandb.ai/site).
|
||||
- Support calling anywhere in the code to visualize or record intermediate states of the model during training or testing, such as feature maps and validation results.
|
||||
|
||||
Based on MMEngine's Visualizer, MMOCR comes with a variety of pre-built visualization tools that can be used by the user by simply modifying the following configuration files.
|
||||
|
||||
- The `tools/analysis_tools/browse_dataset.py` script provides a dataset visualization function that draws images and corresponding annotations after Data Transforms, as described in [`browse_dataset.py`](useful_tools.md).
|
||||
- MMEngine implements `LoggerHook`, which uses `Visualizer` to write the learning rate, loss and evaluation results to the backend set by `Visualizer`. Therefore, by modifying the `Visualizer` backend in the configuration file, for example to ` TensorBoardVISBackend` or `WandbVISBackend`, you can implement logging to common training logging tools such as `TensorBoard` or `WandB`, thus making it easy for users to use these visualization tools to analyze and monitor the training process.
|
||||
- The `VisualizerHook` is implemented in MMOCR, which uses the `Visualizer` to visualize or store the prediction results of the validation or prediction phase into the backend set by the `Visualizer`, so by modifying the `Visualizer` backend in the configuration file, for example, to ` TensorBoardVISBackend` or `WandbVISBackend`, you can implement storing the predicted images to `TensorBoard` or `Wandb`.
|
||||
|
||||
## Configuration
|
||||
|
||||
Thanks to the use of the registration mechanism, in MMOCR we can set the behavior of the `Visualizer` by modifying the configuration file. Usually, we define the default configuration for the visualizer in `task/_base_/default_runtime.py`, see [configuration tutorial](config.md) for details.
|
||||
|
||||
```Python
|
||||
vis_backends = [dict(type='LocalVisBackend')]
|
||||
visualizer = dict(
|
||||
type='TextxxxLocalVisualizer', # use different visualizers for different tasks
|
||||
vis_backends=vis_backends,
|
||||
name='visualizer')
|
||||
```
|
||||
|
||||
Based on the above example, we can see that the configuration of `Visualizer` consists of two main parts, namely, the type of `Visualizer` and the visualization backend `vis_backends` it uses.
|
||||
|
||||
- For different OCR tasks, various visualizers are pre-configured in MMOCR, including [`TextDetLocalVisualizer`](mmocr.visualization.TextDetLocalVisualizer), [`TextRecogLocalVisualizer`](mmocr.visualization.TextRecogLocalVisualizer), [`TextSpottingLocalVisualizer`](mmocr.visualization.TextSpottingLocalVisualizer) and [`KIELocalVisualizer`](mmocr.visualization.KIELocalVisualizer). These visualizers extend the basic Visulizer API according to the characteristics of their tasks and implement the corresponding tag information interface `add_datasamples`. For example, users can directly use `TextDetLocalVisualizer` to visualize labels or predictions for text detection tasks.
|
||||
- MMOCR sets the visualization backend `vis_backend` to the local visualization backend `LocalVisBackend` by default, saving all visualization results and other training information in a local folder.
|
||||
|
||||
## Storage
|
||||
|
||||
MMOCR uses the local visualization backend [`LocalVisBackend`](mmengine.visualization.LocalVisBackend) by default, and the model loss, learning rate, model evaluation accuracy and visualization The information stored in `VisualizerHook` and `LoggerHook`, including loss, learning rate, evaluation accuracy will be saved to the `{work_dir}/{config_name}/{time}/{vis_data}` folder by default. In addition, MMOCR also supports other common visualization backends, such as `TensorboardVisBackend` and `WandbVisBackend`, and you only need to change the `vis_backends` type in the configuration file to the corresponding visualization backend. For example, you can store data to `TensorBoard` and `Wandb` by simply inserting the following code block into the configuration file.
|
||||
|
||||
```Python
|
||||
_base_.Visualizer.vis_backends = [
|
||||
dict(type='LocalVisBackend'),
|
||||
dict(type='TensorboardVisBackend'),
|
||||
dict(type='WandbVisBackend'),]
|
||||
```
|
||||
|
||||
## Plot
|
||||
|
||||
### Plot the prediction results
|
||||
|
||||
MMOCR mainly uses [`VisualizationHook`](mmocr.engine.hooks.VisualizationHook) to plot the prediction results of validation and test, by default `VisualizationHook` is off, and the default configuration is as follows.
|
||||
|
||||
```Python
|
||||
visualization=dict( # user visualization of validation and test results
|
||||
type='VisualizationHook',
|
||||
enable=False,
|
||||
interval=1,
|
||||
show=False,
|
||||
draw_gt=False,
|
||||
draw_pred=False)
|
||||
```
|
||||
|
||||
The following table shows the parameters supported by `VisualizationHook`.
|
||||
|
||||
| Parameters | Description |
|
||||
| :--------: | :-----------------------------------------------------------------------------------------------------------: |
|
||||
| enable | The VisualizationHook is turned on and off by the enable parameter, which is the default state. |
|
||||
| interval | Controls how much iteration to store or display the results of a val or test if VisualizationHook is enabled. |
|
||||
| show | Controls whether to visualize the results of val or test. |
|
||||
| draw_gt | Whether the results of val or test are drawn with or without labeling information |
|
||||
| draw_pred | whether to draw predictions for val or test results |
|
||||
|
||||
If you want to enable `VisualizationHook` related functions and configurations during training or testing, you only need to modify the configuration, take `dbnet_resnet18_fpnc_1200e_icdar2015.py` as an example, draw annotations and predictions at the same time, and display the images, the configuration can be modified as follows
|
||||
|
||||
```Python
|
||||
visualization = _base_.default_hooks.visualization
|
||||
visualization.update(
|
||||
dict(enable=True, show=True, draw_gt=True, draw_pred=True))
|
||||
```
|
||||
|
||||
<div align=center>
|
||||
<img src="https://user-images.githubusercontent.com/24622904/187426573-8448c827-1336-4416-aebc-e7fccce362cd.png" height="200"/>
|
||||
</div>
|
||||
|
||||
If you only want to see the predicted result information you can just let `draw_pred=True`
|
||||
|
||||
```Python
|
||||
visualization = _base_.default_hooks.visualization
|
||||
visualization.update(
|
||||
dict(enable=True, show=True, draw_gt=False, draw_pred=True))
|
||||
```
|
||||
|
||||
<div align=center>
|
||||
<img src="https://user-images.githubusercontent.com/24622904/187428385-e6a23120-6445-4c55-a265-c550da692087.png" height="300"/>
|
||||
</div>
|
||||
|
||||
The `test.py` procedure is further simplified by providing the `--show` and `--show-dir` parameters to visualize the annotation and prediction results during the test without modifying the configuration.
|
||||
|
||||
```Shell
|
||||
# Show test results
|
||||
python tools/test.py configs/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015.py dbnet_r18_fpnc_1200e_icdar2015/epoch_400.pth --show
|
||||
|
||||
# Specify where to store the prediction results
|
||||
python tools/test.py configs/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015.py dbnet_r18_fpnc_1200e_icdar2015/epoch_400.pth --show-dir imgs/
|
||||
```
|
||||
|
||||
<div align=center>
|
||||
<img src="https://user-images.githubusercontent.com/24622904/187426573-8448c827-1336-4416-aebc-e7fccce362cd.png" height="200"/>
|
||||
</div>
|
||||
|
|
|
@ -1 +1,107 @@
|
|||
# 可视化
|
||||
|
||||
阅读本文前建议先阅读 MMEngine 的[可视化 (Visualization)](https://github.com/open-mmlab/mmengine/blob/main/docs/zh_cn/advanced_tutorials/visualization.md)文档以初步了解 Visualizer 的定义及相关用法。
|
||||
|
||||
简单来说,MMEngine 中实现了用于满足日常可视化需求的可视化器件 [`Visualizer`](mmengine.visualization.Visualizer),其主要包含三个功能:
|
||||
|
||||
- 实现了常用的绘图 API,例如 [`draw_bboxes`](mmengine.visualization.Visualizer.draw_bboxes) 实现了边界盒的绘制功能,[`draw_lines`](mmengine.visualization.Visualizer.draw_lines) 实现了线条的绘制功能。
|
||||
- 支持将可视化结果、学习率曲线、损失函数曲线以及验证精度曲线等写入多种后端中,包括本地磁盘以及常用的深度学习训练日志记录工具,如 [TensorBoard](https://www.tensorflow.org/tensorboard) 和 [WandB](https://wandb.ai/site)。
|
||||
- 支持在代码中的任意位置进行调用,例如在训练或测试过程中可视化或记录模型的中间状态,如特征图及验证结果等。
|
||||
|
||||
基于 MMEngine 的 Visualizer,MMOCR 内预置了多种可视化工具,用户仅需简单修改配置文件即可使用:
|
||||
|
||||
- `tools/analysis_tools/browse_dataset.py` 脚本提供了数据集可视化功能,其可以绘制经过数据变换(Data Transforms)之后的图像及对应的标注内容,详见 [`browse_dataset.py`](useful_tools.md)。
|
||||
- MMEngine 中实现了 `LoggerHook`,该 Hook 利用 `Visualizer` 将学习率、损失以及评估结果等数据写入 `Visualizer` 设置的后端中,因此通过修改配置文件中的 `Visualizer` 后端,比如修改为`TensorBoardVISBackend` 或 `WandbVISBackend`,可以实现将日志到 `TensorBoard` 或 `WandB` 等常见的训练日志记录工具中,从而方便用户使用这些可视化工具来分析和监控训练流程。
|
||||
- MMOCR 中实现了`VisualizerHook`,该 Hook 利用 `Visualizer` 将验证阶段或预测阶段的预测结果进行可视化或储存至 `Visualizer` 设置的后端中,因此通过修改配置文件中的 `Visualizer` 后端,比如修改为`TensorBoardVISBackend` 或 `WandbVISBackend`,可以实现将预测的图像存储到 `TensorBoard` 或 `Wandb`中。
|
||||
|
||||
## 配置
|
||||
|
||||
得益于注册机制的使用,在 MMOCR 中,我们可以通过修改配置文件来设置可视化器件 `Visualizer` 的行为。通常,我们在 `task/_base_/default_runtime.py` 中定义可视化相关的默认配置, 详见[配置教程](config.md)。
|
||||
|
||||
```Python
|
||||
vis_backends = [dict(type='LocalVisBackend')]
|
||||
visualizer = dict(
|
||||
type='TextxxxLocalVisualizer', # 不同任务使用不同的可视化器
|
||||
vis_backends=vis_backends,
|
||||
name='visualizer')
|
||||
```
|
||||
|
||||
依据以上示例,我们可以看出 `Visualizer` 的配置主要由两个部分组成,即,`Visualizer`的类型以及其采用的可视化后端 `vis_backends`。
|
||||
|
||||
- 针对不同的 OCR 任务,MMOCR 中预置了多种可视化器件,包括 [`TextDetLocalVisualizer`](mmocr.visualization.TextDetLocalVisualizer),[`TextRecogLocalVisualizer`](mmocr.visualization.TextRecogLocalVisualizer),[`TextSpottingLocalVisualizer`](mmocr.visualization.TextSpottingLocalVisualizer) 以及[`KIELocalVisualizer`](mmocr.visualization.KIELocalVisualizer)。这些可视化器件依照自身任务的特点对基础的 Visulizer API 进行了拓展,并实现了相应的标签信息接口 `add_datasamples`。例如,用户可以直接使用 `TextDetLocalVisualizer` 来可视化文本检测任务的标签或预测结果。
|
||||
- MMOCR 默认将可视化后端 `vis_backend` 设置为本地可视化后端 `LocalVisBackend`,将所有可视化结果及其他训练信息保存在本地文件夹中。
|
||||
|
||||
## 存储
|
||||
|
||||
MMOCR 默认使用本地可视化后端 [`LocalVisBackend`](mmengine.visualization.LocalVisBackend),`VisualizerHook` 和`LoggerHook` 中存储的模型损失、学习率、模型评估精度以及可视化结果等信息将被默认保存至`{work_dir}/{config_name}/{time}/{vis_data}` 文件夹。此外,MMOCR 也支持其它常用的可视化后端,如 `TensorboardVisBackend` 以及 `WandbVisBackend`用户只需要将配置文件中的 `vis_backends` 类型修改为对应的可视化后端即可。例如,用户只需要在配置文件中插入以下代码块,即可将数据存储至 `TensorBoard` 以及 `WandB`中。
|
||||
|
||||
```Python
|
||||
_base_.Visualizer.vis_backends = [
|
||||
dict(type='LocalVisBackend'),
|
||||
dict(type='TensorboardVisBackend'),
|
||||
dict(type='WandbVisBackend'),]
|
||||
```
|
||||
|
||||
## 绘制
|
||||
|
||||
### 绘制预测结果信息
|
||||
|
||||
MMOCR 主要利用 [`VisualizationHook`](mmocr.engine.hooks.VisualizationHook)validation 和 test 的预测结果, 默认情况下 `VisualizationHook`为关闭状态,默认配置如下:
|
||||
|
||||
```Python
|
||||
visualization=dict( # 用户可视化 validation 和 test 的结果
|
||||
type='VisualizationHook',
|
||||
enable=False,
|
||||
interval=1,
|
||||
show=False,
|
||||
draw_gt=False,
|
||||
draw_pred=False)
|
||||
```
|
||||
|
||||
下表为 `VisualizationHook` 支持的参数:
|
||||
|
||||
| 参数 | 说明 |
|
||||
| :-------: | :---------------------------------------------------------------------------------: |
|
||||
| enable | VisualizationHook 的开启和关闭由参数enable控制默认是关闭的状态, |
|
||||
| interval | 在VisualizationHook开启的情况下,用以控制多少iteration 存储或展示 val 或 test 的结果 |
|
||||
| show | 控制是否可视化 val 或 test 的结果 |
|
||||
| draw_gt | val 或 test 的结果是否绘制标注信息 |
|
||||
| draw_pred | val 或 test 的结果是否绘制预测结果 |
|
||||
|
||||
如果在训练或者测试过程中想开启 `VisualizationHook` 相关功能和配置,仅需修改配置即可,以 `dbnet_resnet18_fpnc_1200e_icdar2015.py`为例, 同时绘制标注和预测,并且将图像展示,配置可进行如下修改
|
||||
|
||||
```Python
|
||||
visualization = _base_.default_hooks.visualization
|
||||
visualization.update(
|
||||
dict(enable=True, show=True, draw_gt=True, draw_pred=True))
|
||||
```
|
||||
|
||||
<div align=center>
|
||||
<img src="https://user-images.githubusercontent.com/24622904/187426573-8448c827-1336-4416-aebc-e7fccce362cd.png" height="200"/>
|
||||
</div>
|
||||
|
||||
如果只想查看预测结果信息可以只让`draw_pred=True`
|
||||
|
||||
```Python
|
||||
visualization = _base_.default_hooks.visualization
|
||||
visualization.update(
|
||||
dict(enable=True, show=True, draw_gt=False, draw_pred=True))
|
||||
```
|
||||
|
||||
<div align=center>
|
||||
<img src="https://user-images.githubusercontent.com/24622904/187428385-e6a23120-6445-4c55-a265-c550da692087.png" height="300"/>
|
||||
</div>
|
||||
|
||||
在 `test.py` 过程中进一步简化,提供了 `--show` 和 `--show-dir`两个参数,无需修改配置即可视化测试过程中绘制标注和预测结果。
|
||||
|
||||
```Shell
|
||||
# 展示test 结果
|
||||
python tools/test.py configs/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015.py dbnet_r18_fpnc_1200e_icdar2015/epoch_400.pth --show
|
||||
|
||||
# 指定预测结果的存储位置
|
||||
python tools/test.py configs/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015.py dbnet_r18_fpnc_1200e_icdar2015/epoch_400.pth --show-dir imgs/
|
||||
```
|
||||
|
||||
<div align=center>
|
||||
<img src="https://user-images.githubusercontent.com/24622904/187426573-8448c827-1336-4416-aebc-e7fccce362cd.png" height="200"/>
|
||||
</div>
|
||||
|
|
Loading…
Reference in New Issue