mirror of https://github.com/open-mmlab/mmocr.git
[TODO] Updata det_datasets & recog_datasets
parent
254dbdd18a
commit
dc180443b8
|
@ -1,18 +1,23 @@
|
|||
dataset_type = 'IcdarDataset'
|
||||
data_root = 'data/ctw1500'
|
||||
data_root = 'data/det/ctw1500'
|
||||
|
||||
train = dict(
|
||||
type=dataset_type,
|
||||
ann_file=f'{data_root}/instances_training.json',
|
||||
img_prefix=f'{data_root}/imgs',
|
||||
train_anno_path = 'instances_training.json'
|
||||
test_anno_path = 'instances_test.json'
|
||||
|
||||
train_dataset = dict(
|
||||
type='OCRDataset',
|
||||
data_root=data_root,
|
||||
ann_file=train_anno_path,
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
||||
pipeline=None)
|
||||
|
||||
test = dict(
|
||||
type=dataset_type,
|
||||
ann_file=f'{data_root}/instances_test.json',
|
||||
img_prefix=f'{data_root}/imgs',
|
||||
test_dataset = dict(
|
||||
type='OCRDataset',
|
||||
data_root=data_root,
|
||||
ann_file=test_anno_path,
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
test_mode=True,
|
||||
pipeline=None)
|
||||
|
||||
train_list = [train]
|
||||
|
||||
test_list = [test]
|
||||
train_list = [train_dataset]
|
||||
test_list = [test_dataset]
|
||||
|
|
|
@ -1,18 +1,23 @@
|
|||
dataset_type = 'IcdarDataset'
|
||||
data_root = 'data/icdar2015'
|
||||
data_root = 'data/det/icdar2015'
|
||||
|
||||
train = dict(
|
||||
type=dataset_type,
|
||||
ann_file=f'{data_root}/instances_training.json',
|
||||
img_prefix=f'{data_root}/imgs',
|
||||
train_anno_path = 'instances_training.json'
|
||||
test_anno_path = 'instances_test.json'
|
||||
|
||||
train_dataset = dict(
|
||||
type='OCRDataset',
|
||||
data_root=data_root,
|
||||
ann_file=train_anno_path,
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
||||
pipeline=None)
|
||||
|
||||
test = dict(
|
||||
type=dataset_type,
|
||||
ann_file=f'{data_root}/instances_test.json',
|
||||
img_prefix=f'{data_root}/imgs',
|
||||
test_dataset = dict(
|
||||
type='OCRDataset',
|
||||
data_root=data_root,
|
||||
ann_file=test_anno_path,
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
test_mode=True,
|
||||
pipeline=None)
|
||||
|
||||
train_list = [train]
|
||||
|
||||
test_list = [test]
|
||||
train_list = [train_dataset]
|
||||
test_list = [test_dataset]
|
||||
|
|
|
@ -1,18 +1,23 @@
|
|||
dataset_type = 'IcdarDataset'
|
||||
data_root = 'data/icdar2017'
|
||||
data_root = 'data/det/icdar2017'
|
||||
|
||||
train = dict(
|
||||
type=dataset_type,
|
||||
ann_file=f'{data_root}/instances_training.json',
|
||||
img_prefix=f'{data_root}/imgs',
|
||||
train_anno_path = 'instances_training.json'
|
||||
test_anno_path = 'instances_test.json'
|
||||
|
||||
train_dataset = dict(
|
||||
type='OCRDataset',
|
||||
data_root=data_root,
|
||||
ann_file=train_anno_path,
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
||||
pipeline=None)
|
||||
|
||||
test = dict(
|
||||
type=dataset_type,
|
||||
ann_file=f'{data_root}/instances_val.json',
|
||||
img_prefix=f'{data_root}/imgs',
|
||||
test_dataset = dict(
|
||||
type='OCRDataset',
|
||||
data_root=data_root,
|
||||
ann_file=test_anno_path,
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
test_mode=True,
|
||||
pipeline=None)
|
||||
|
||||
train_list = [train]
|
||||
|
||||
test_list = [test]
|
||||
train_list = [train_dataset]
|
||||
test_list = [test_dataset]
|
||||
|
|
|
@ -1,18 +1,23 @@
|
|||
dataset_type = 'TextDetDataset'
|
||||
data_root = 'data/synthtext'
|
||||
data_root = 'data/det/synthtext'
|
||||
|
||||
train = dict(
|
||||
type=dataset_type,
|
||||
ann_file=f'{data_root}/instances_training.lmdb',
|
||||
loader=dict(
|
||||
type='AnnFileLoader',
|
||||
repeat=1,
|
||||
file_format='lmdb',
|
||||
parser=dict(
|
||||
type='LineJsonParser',
|
||||
keys=['file_name', 'height', 'width', 'annotations'])),
|
||||
img_prefix=f'{data_root}/imgs',
|
||||
train_anno_path = 'instances_training.json'
|
||||
test_anno_path = 'instances_test.json'
|
||||
|
||||
train_dataset = dict(
|
||||
type='OCRDataset',
|
||||
data_root=data_root,
|
||||
ann_file=train_anno_path,
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
||||
pipeline=None)
|
||||
|
||||
train_list = [train]
|
||||
test_list = [train]
|
||||
test_dataset = dict(
|
||||
type='OCRDataset',
|
||||
data_root=data_root,
|
||||
ann_file=test_anno_path,
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
test_mode=True,
|
||||
pipeline=None)
|
||||
|
||||
train_list = [train_dataset]
|
||||
test_list = [test_dataset]
|
||||
|
|
|
@ -1,41 +1,23 @@
|
|||
root = 'tests/data/toy_dataset'
|
||||
data_root = 'tests/data/det_toy_dataset'
|
||||
|
||||
# dataset with type='TextDetDataset'
|
||||
train1 = dict(
|
||||
type='TextDetDataset',
|
||||
img_prefix=f'{root}/imgs',
|
||||
ann_file=f'{root}/instances_test.txt',
|
||||
loader=dict(
|
||||
type='AnnFileLoader',
|
||||
repeat=4,
|
||||
file_format='txt',
|
||||
parser=dict(
|
||||
type='LineJsonParser',
|
||||
keys=['file_name', 'height', 'width', 'annotations'])),
|
||||
pipeline=None,
|
||||
test_mode=False)
|
||||
train_anno_path = 'instances_test.json'
|
||||
test_anno_path = 'instances_test.json'
|
||||
|
||||
# dataset with type='IcdarDataset'
|
||||
train2 = dict(
|
||||
type='IcdarDataset',
|
||||
ann_file=f'{root}/instances_test.json',
|
||||
img_prefix=f'{root}/imgs',
|
||||
train_dataset = dict(
|
||||
type='OCRDataset',
|
||||
data_root=data_root,
|
||||
ann_file=train_anno_path,
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
||||
pipeline=None)
|
||||
|
||||
test = dict(
|
||||
type='TextDetDataset',
|
||||
img_prefix=f'{root}/imgs',
|
||||
ann_file=f'{root}/instances_test.txt',
|
||||
loader=dict(
|
||||
type='AnnFileLoader',
|
||||
repeat=1,
|
||||
file_format='txt',
|
||||
parser=dict(
|
||||
type='LineJsonParser',
|
||||
keys=['file_name', 'height', 'width', 'annotations'])),
|
||||
pipeline=None,
|
||||
test_mode=True)
|
||||
test_dataset = dict(
|
||||
type='OCRDataset',
|
||||
data_root=data_root,
|
||||
ann_file=test_anno_path,
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
test_mode=True,
|
||||
pipeline=None)
|
||||
|
||||
train_list = [train1, train2]
|
||||
|
||||
test_list = [test]
|
||||
train_list = [train_dataset]
|
||||
test_list = [test_dataset]
|
||||
|
|
|
@ -1,21 +1,15 @@
|
|||
# Text Recognition Training set, including:
|
||||
# Synthetic Datasets: Syn90k
|
||||
|
||||
train_root = 'data/mixture/Syn90k'
|
||||
|
||||
train_img_prefix = f'{train_root}/mnt/ramdisk/max/90kDICT32px'
|
||||
train_ann_file = f'{train_root}/label.lmdb'
|
||||
data_root = 'data/recog'
|
||||
train_img_prefix1 = 'Syn90k/mnt/ramdisk/max/90kDICT32px'
|
||||
train_ann_file1 = 'Syn90k/label.json'
|
||||
file_client_args = dict(backend='disk')
|
||||
|
||||
train = dict(
|
||||
type='OCRDataset',
|
||||
img_prefix=train_img_prefix,
|
||||
ann_file=train_ann_file,
|
||||
loader=dict(
|
||||
type='AnnFileLoader',
|
||||
repeat=1,
|
||||
file_format='lmdb',
|
||||
parser=dict(type='LineJsonParser', keys=['filename', 'text'])),
|
||||
pipeline=None,
|
||||
test_mode=False)
|
||||
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=train_img_prefix1),
|
||||
ann_file=train_ann_file1,
|
||||
test_mode=False,
|
||||
pipeline=None)
|
||||
train_list = [train]
|
||||
|
|
|
@ -2,30 +2,24 @@
|
|||
# Synthetic Datasets: SynthText, Syn90k
|
||||
# Both annotations are filtered so that
|
||||
# only alphanumeric terms are left
|
||||
|
||||
train_root = 'data/mixture'
|
||||
|
||||
train_img_prefix1 = f'{train_root}/Syn90k/mnt/ramdisk/max/90kDICT32px'
|
||||
train_ann_file1 = f'{train_root}/Syn90k/label.lmdb'
|
||||
data_root = 'data/recog'
|
||||
train_img_prefix1 = 'Syn90k/mnt/ramdisk/max/90kDICT32px'
|
||||
train_ann_file1 = 'Syn90k/label.json'
|
||||
file_client_args = dict(backend='disk')
|
||||
|
||||
train1 = dict(
|
||||
type='OCRDataset',
|
||||
img_prefix=train_img_prefix1,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=train_img_prefix1),
|
||||
ann_file=train_ann_file1,
|
||||
loader=dict(
|
||||
type='AnnFileLoader',
|
||||
repeat=1,
|
||||
file_format='lmdb',
|
||||
parser=dict(type='LineJsonParser', keys=['filename', 'text'])),
|
||||
pipeline=None,
|
||||
test_mode=False)
|
||||
|
||||
train_img_prefix2 = f'{train_root}/SynthText/' + \
|
||||
'synthtext/SynthText_patch_horizontal'
|
||||
train_ann_file2 = f'{train_root}/SynthText/alphanumeric_label.lmdb'
|
||||
test_mode=False,
|
||||
pipeline=None)
|
||||
|
||||
train_img_prefix2 = 'SynthText/synthtext/SynthText_patch_horizontal'
|
||||
train_ann_file2 = 'SynthText/alphanumeric_label.json'
|
||||
train2 = {key: value for key, value in train1.items()}
|
||||
train2['img_prefix'] = train_img_prefix2
|
||||
train2['ann_file'] = train_ann_file2
|
||||
train2['data_root'] = data_root
|
||||
train2['data_prefix'] = dict(img_path=train_img_prefix2),
|
||||
train2['ann_file'] = dict(img_path=train_ann_file2),
|
||||
|
||||
train_list = [train1, train2]
|
||||
|
|
|
@ -1,29 +1,25 @@
|
|||
# Text Recognition Training set, including:
|
||||
# Synthetic Datasets: SynthText, Syn90k
|
||||
|
||||
train_root = 'data/mixture'
|
||||
data_root = 'data/recog'
|
||||
|
||||
train_img_prefix1 = f'{train_root}/Syn90k/mnt/ramdisk/max/90kDICT32px'
|
||||
train_ann_file1 = f'{train_root}/Syn90k/label.lmdb'
|
||||
train_img_prefix1 = 'Syn90k/mnt/ramdisk/max/90kDICT32px'
|
||||
train_ann_file1 = 'Syn90k/label.json'
|
||||
file_client_args = dict(backend='disk')
|
||||
|
||||
train1 = dict(
|
||||
type='OCRDataset',
|
||||
img_prefix=train_img_prefix1,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=train_img_prefix1),
|
||||
ann_file=train_ann_file1,
|
||||
loader=dict(
|
||||
type='AnnFileLoader',
|
||||
repeat=1,
|
||||
file_format='lmdb',
|
||||
parser=dict(type='LineJsonParser', keys=['filename', 'text'])),
|
||||
pipeline=None,
|
||||
test_mode=False)
|
||||
|
||||
train_img_prefix2 = f'{train_root}/SynthText/' + \
|
||||
'synthtext/SynthText_patch_horizontal'
|
||||
train_ann_file2 = f'{train_root}/SynthText/label.lmdb'
|
||||
test_mode=False,
|
||||
pipeline=None)
|
||||
|
||||
train_img_prefix2 = 'SynthText/synthtext/SynthText_patch_horizontal'
|
||||
train_ann_file2 = 'SynthText/label.json'
|
||||
train2 = {key: value for key, value in train1.items()}
|
||||
train2['img_prefix'] = train_img_prefix2
|
||||
train2['ann_file'] = train_ann_file2
|
||||
train2['data_root'] = data_root
|
||||
train2['data_prefix'] = dict(img_path=train_img_prefix2),
|
||||
train2['ann_file'] = dict(img_path=train_ann_file2),
|
||||
|
||||
train_list = [train1, train2]
|
||||
|
|
|
@ -1,81 +1,60 @@
|
|||
# Text Recognition Training set, including:
|
||||
# Synthetic Datasets: SynthText, SynthAdd, Syn90k
|
||||
# Real Dataset: IC11, IC13, IC15, COCO-Test, IIIT5k
|
||||
data_root = 'data/recog'
|
||||
|
||||
train_prefix = 'data/mixture'
|
||||
train_img_prefix1 = 'icdar_2011'
|
||||
train_img_prefix2 = 'icdar_2013'
|
||||
train_img_prefix3 = 'icdar_2015'
|
||||
train_img_prefix4 = 'coco_text'
|
||||
train_img_prefix5 = 'IIIT5K'
|
||||
train_img_prefix6 = 'SynthText_Add'
|
||||
train_img_prefix7 = 'SynthText'
|
||||
train_img_prefix8 = 'Syn90k'
|
||||
|
||||
train_img_prefix1 = f'{train_prefix}/icdar_2011'
|
||||
train_img_prefix2 = f'{train_prefix}/icdar_2013'
|
||||
train_img_prefix3 = f'{train_prefix}/icdar_2015'
|
||||
train_img_prefix4 = f'{train_prefix}/coco_text'
|
||||
train_img_prefix5 = f'{train_prefix}/IIIT5K'
|
||||
train_img_prefix6 = f'{train_prefix}/SynthText_Add'
|
||||
train_img_prefix7 = f'{train_prefix}/SynthText'
|
||||
train_img_prefix8 = f'{train_prefix}/Syn90k'
|
||||
|
||||
train_ann_file1 = f'{train_prefix}/icdar_2011/train_label.txt',
|
||||
train_ann_file2 = f'{train_prefix}/icdar_2013/train_label.txt',
|
||||
train_ann_file3 = f'{train_prefix}/icdar_2015/train_label.txt',
|
||||
train_ann_file4 = f'{train_prefix}/coco_text/train_label.txt',
|
||||
train_ann_file5 = f'{train_prefix}/IIIT5K/train_label.txt',
|
||||
train_ann_file6 = f'{train_prefix}/SynthText_Add/label.txt',
|
||||
train_ann_file7 = f'{train_prefix}/SynthText/shuffle_labels.txt',
|
||||
train_ann_file8 = f'{train_prefix}/Syn90k/shuffle_labels.txt'
|
||||
train_ann_file1 = 'icdar_2011/train_label.json',
|
||||
train_ann_file2 = 'icdar_2013/train_label.json',
|
||||
train_ann_file3 = 'icdar_2015/train_label.json',
|
||||
train_ann_file4 = 'coco_text/train_label.json',
|
||||
train_ann_file5 = 'IIIT5K/train_label.json',
|
||||
train_ann_file6 = 'SynthText_Add/label.json',
|
||||
train_ann_file7 = 'SynthText/shuffle_labels.json',
|
||||
train_ann_file8 = 'Syn90k/shuffle_labels.json'
|
||||
|
||||
train1 = dict(
|
||||
type='OCRDataset',
|
||||
img_prefix=train_img_prefix1,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=train_img_prefix1),
|
||||
ann_file=train_ann_file1,
|
||||
loader=dict(
|
||||
type='AnnFileLoader',
|
||||
repeat=20,
|
||||
file_format='txt',
|
||||
parser=dict(
|
||||
type='LineStrParser',
|
||||
keys=['filename', 'text'],
|
||||
keys_idx=[0, 1],
|
||||
separator=' ')),
|
||||
pipeline=None,
|
||||
test_mode=False)
|
||||
test_mode=False,
|
||||
pipeline=None)
|
||||
|
||||
train2 = {key: value for key, value in train1.items()}
|
||||
train2['img_prefix'] = train_img_prefix2
|
||||
train2['data_prefix'] = dict(img_path=train_img_prefix2)
|
||||
train2['ann_file'] = train_ann_file2
|
||||
|
||||
train3 = {key: value for key, value in train1.items()}
|
||||
train3['img_prefix'] = train_img_prefix3
|
||||
train3['img_prefix'] = dict(img_path=train_img_prefix3)
|
||||
train3['ann_file'] = train_ann_file3
|
||||
|
||||
train4 = {key: value for key, value in train1.items()}
|
||||
train4['img_prefix'] = train_img_prefix4
|
||||
train4['img_prefix'] = dict(img_path=train_img_prefix4)
|
||||
train4['ann_file'] = train_ann_file4
|
||||
|
||||
train5 = {key: value for key, value in train1.items()}
|
||||
train5['img_prefix'] = train_img_prefix5
|
||||
train5['img_prefix'] = dict(img_path=train_img_prefix5)
|
||||
train5['ann_file'] = train_ann_file5
|
||||
|
||||
train6 = dict(
|
||||
type='OCRDataset',
|
||||
img_prefix=train_img_prefix6,
|
||||
ann_file=train_ann_file6,
|
||||
loader=dict(
|
||||
type='AnnFileLoader',
|
||||
repeat=1,
|
||||
file_format='txt',
|
||||
parser=dict(
|
||||
type='LineStrParser',
|
||||
keys=['filename', 'text'],
|
||||
keys_idx=[0, 1],
|
||||
separator=' ')),
|
||||
pipeline=None,
|
||||
test_mode=False)
|
||||
train6 = {key: value for key, value in train1.items()}
|
||||
train6['img_prefix'] = dict(img_path=train_img_prefix6)
|
||||
train6['ann_file'] = train_ann_file6
|
||||
|
||||
train7 = {key: value for key, value in train6.items()}
|
||||
train7['img_prefix'] = train_img_prefix7
|
||||
train7 = {key: value for key, value in train1.items()}
|
||||
train7['img_prefix'] = dict(img_path=train_img_prefix7)
|
||||
train7['ann_file'] = train_ann_file7
|
||||
|
||||
train8 = {key: value for key, value in train6.items()}
|
||||
train8['img_prefix'] = train_img_prefix8
|
||||
train8 = {key: value for key, value in train1.items()}
|
||||
train8['img_prefix'] = dict(img_path=train_img_prefix8)
|
||||
train8['ann_file'] = train_ann_file8
|
||||
|
||||
train_list = [train1, train2, train3, train4, train5, train6, train7, train8]
|
||||
|
|
|
@ -1,48 +1,30 @@
|
|||
# Text Recognition Training set, including:
|
||||
# Synthetic Datasets: SynthText, Syn90k
|
||||
data_root = 'data/recog'
|
||||
|
||||
train_root = 'data/mixture'
|
||||
train_img_prefix1 = 'SynthText_Add'
|
||||
train_img_prefix2 = 'SynthText/synthtext/' + \
|
||||
'SynthText_patch_horizontal'
|
||||
train_img_prefix3 = 'Syn90k/mnt/ramdisk/max/90kDICT32px'
|
||||
|
||||
train_img_prefix1 = f'{train_root}/Syn90k/mnt/ramdisk/max/90kDICT32px'
|
||||
train_ann_file1 = f'{train_root}/Syn90k/label.lmdb'
|
||||
train_ann_file1 = 'SynthText_Add/label.json',
|
||||
train_ann_file2 = 'SynthText/label.json',
|
||||
train_ann_file3 = 'Syn90k/label.json'
|
||||
|
||||
train1 = dict(
|
||||
type='OCRDataset',
|
||||
img_prefix=train_img_prefix1,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=train_img_prefix1),
|
||||
ann_file=train_ann_file1,
|
||||
loader=dict(
|
||||
type='AnnFileLoader',
|
||||
repeat=1,
|
||||
file_format='lmdb',
|
||||
parser=dict(type='LineJsonParser', keys=['filename', 'text'])),
|
||||
pipeline=None,
|
||||
test_mode=False)
|
||||
|
||||
train_img_prefix2 = f'{train_root}/SynthText/' + \
|
||||
'synthtext/SynthText_patch_horizontal'
|
||||
train_ann_file2 = f'{train_root}/SynthText/label.lmdb'
|
||||
|
||||
train_img_prefix3 = f'{train_root}/SynthText_Add'
|
||||
train_ann_file3 = f'{train_root}/SynthText_Add/label.txt'
|
||||
test_mode=False,
|
||||
pipeline=None)
|
||||
|
||||
train2 = {key: value for key, value in train1.items()}
|
||||
train2['img_prefix'] = train_img_prefix2
|
||||
train2['data_prefix'] = dict(img_path=train_img_prefix2)
|
||||
train2['ann_file'] = train_ann_file2
|
||||
|
||||
train3 = dict(
|
||||
type='OCRDataset',
|
||||
img_prefix=train_img_prefix3,
|
||||
ann_file=train_ann_file3,
|
||||
loader=dict(
|
||||
type='AnnFileLoader',
|
||||
repeat=1,
|
||||
file_format='txt',
|
||||
parser=dict(
|
||||
type='LineStrParser',
|
||||
keys=['filename', 'text'],
|
||||
keys_idx=[0, 1],
|
||||
separator=' ')),
|
||||
pipeline=None,
|
||||
test_mode=False)
|
||||
train3 = {key: value for key, value in train1.items()}
|
||||
train3['img_prefix'] = dict(img_path=train_img_prefix3)
|
||||
train3['ann_file'] = train_ann_file3
|
||||
|
||||
train_list = [train1, train2, train3]
|
||||
|
|
|
@ -1,23 +0,0 @@
|
|||
# Text Recognition Training set, including:
|
||||
# Synthetic Datasets: SynthText (with character level boxes)
|
||||
|
||||
train_img_root = 'data/mixture'
|
||||
|
||||
train_img_prefix = f'{train_img_root}/SynthText'
|
||||
|
||||
train_ann_file = f'{train_img_root}/SynthText/instances_train.txt'
|
||||
|
||||
train = dict(
|
||||
type='OCRSegDataset',
|
||||
img_prefix=train_img_prefix,
|
||||
ann_file=train_ann_file,
|
||||
loader=dict(
|
||||
type='AnnFileLoader',
|
||||
repeat=1,
|
||||
file_format='txt',
|
||||
parser=dict(
|
||||
type='LineJsonParser', keys=['file_name', 'annotations', 'text'])),
|
||||
pipeline=None,
|
||||
test_mode=False)
|
||||
|
||||
train_list = [train]
|
|
@ -2,56 +2,48 @@
|
|||
# Regular Datasets: IIIT5K, SVT, IC13
|
||||
# Irregular Datasets: IC15, SVTP, CT80
|
||||
|
||||
test_root = 'data/mixture'
|
||||
test_root = 'data/recog'
|
||||
|
||||
test_img_prefix1 = f'{test_root}/IIIT5K/'
|
||||
test_img_prefix2 = f'{test_root}/svt/'
|
||||
test_img_prefix3 = f'{test_root}/icdar_2013/'
|
||||
test_img_prefix4 = f'{test_root}/icdar_2015/'
|
||||
test_img_prefix5 = f'{test_root}/svtp/'
|
||||
test_img_prefix6 = f'{test_root}/ct80/'
|
||||
test_img_prefix1 = 'IIIT5K/'
|
||||
test_img_prefix2 = 'svt/'
|
||||
test_img_prefix3 = 'icdar_2013/'
|
||||
test_img_prefix4 = 'icdar_2015/'
|
||||
test_img_prefix5 = 'svtp/'
|
||||
test_img_prefix6 = 'ct80/'
|
||||
|
||||
test_ann_file1 = f'{test_root}/IIIT5K/test_label.txt'
|
||||
test_ann_file2 = f'{test_root}/svt/test_label.txt'
|
||||
test_ann_file3 = f'{test_root}/icdar_2013/test_label_1015.txt'
|
||||
test_ann_file4 = f'{test_root}/icdar_2015/test_label.txt'
|
||||
test_ann_file5 = f'{test_root}/svtp/test_label.txt'
|
||||
test_ann_file6 = f'{test_root}/ct80/test_label.txt'
|
||||
test_ann_file1 = 'IIIT5K/test_label.josn'
|
||||
test_ann_file2 = 'svt/test_label.josn'
|
||||
test_ann_file3 = 'icdar_2013/test_label_1015.josn'
|
||||
test_ann_file4 = 'icdar_2015/test_label.josn'
|
||||
test_ann_file5 = 'svtp/test_label.josn'
|
||||
test_ann_file6 = 'ct80/test_label.josn'
|
||||
|
||||
test1 = dict(
|
||||
type='OCRDataset',
|
||||
img_prefix=test_img_prefix1,
|
||||
data_root=test_root,
|
||||
data_prefix=dict(img_path=test_img_prefix1),
|
||||
ann_file=test_ann_file1,
|
||||
loader=dict(
|
||||
type='AnnFileLoader',
|
||||
repeat=1,
|
||||
file_format='txt',
|
||||
parser=dict(
|
||||
type='LineStrParser',
|
||||
keys=['filename', 'text'],
|
||||
keys_idx=[0, 1],
|
||||
separator=' ')),
|
||||
pipeline=None,
|
||||
test_mode=True)
|
||||
test_mode=True,
|
||||
pipeline=None)
|
||||
|
||||
test2 = {key: value for key, value in test1.items()}
|
||||
test2['img_prefix'] = test_img_prefix2
|
||||
test2['data_prefix'] = dict(img_path=test_img_prefix2)
|
||||
test2['ann_file'] = test_ann_file2
|
||||
|
||||
test3 = {key: value for key, value in test1.items()}
|
||||
test3['img_prefix'] = test_img_prefix3
|
||||
test3['data_prefix'] = dict(img_path=test_img_prefix3)
|
||||
test3['ann_file'] = test_ann_file3
|
||||
|
||||
test4 = {key: value for key, value in test1.items()}
|
||||
test4['img_prefix'] = test_img_prefix4
|
||||
test4['data_prefix'] = dict(img_path=test_img_prefix4)
|
||||
test4['ann_file'] = test_ann_file4
|
||||
|
||||
test5 = {key: value for key, value in test1.items()}
|
||||
test5['img_prefix'] = test_img_prefix5
|
||||
test5['data_prefix'] = dict(img_path=test_img_prefix5)
|
||||
test5['ann_file'] = test_ann_file5
|
||||
|
||||
test6 = {key: value for key, value in test1.items()}
|
||||
test6['img_prefix'] = test_img_prefix6
|
||||
test6['data_prefix'] = dict(img_path=test_img_prefix6)
|
||||
test6['ann_file'] = test_ann_file6
|
||||
|
||||
test_list = [test1, test2, test3, test4, test5, test6]
|
||||
|
|
|
@ -1,34 +0,0 @@
|
|||
prefix = 'tests/data/ocr_char_ann_toy_dataset/'
|
||||
|
||||
train = dict(
|
||||
type='OCRSegDataset',
|
||||
img_prefix=f'{prefix}/imgs',
|
||||
ann_file=f'{prefix}/instances_train.txt',
|
||||
loader=dict(
|
||||
type='AnnFileLoader',
|
||||
repeat=100,
|
||||
file_format='txt',
|
||||
parser=dict(
|
||||
type='LineJsonParser', keys=['file_name', 'annotations', 'text'])),
|
||||
pipeline=None,
|
||||
test_mode=True)
|
||||
|
||||
test = dict(
|
||||
type='OCRDataset',
|
||||
img_prefix=f'{prefix}/imgs',
|
||||
ann_file=f'{prefix}/instances_test.txt',
|
||||
loader=dict(
|
||||
type='AnnFileLoader',
|
||||
repeat=1,
|
||||
file_format='txt',
|
||||
parser=dict(
|
||||
type='LineStrParser',
|
||||
keys=['filename', 'text'],
|
||||
keys_idx=[0, 1],
|
||||
separator=' ')),
|
||||
pipeline=None,
|
||||
test_mode=True)
|
||||
|
||||
train_list = [train]
|
||||
|
||||
test_list = [test]
|
|
@ -1,54 +1,24 @@
|
|||
dataset_type = 'OCRDataset'
|
||||
data_root = 'tests/data/recog_toy_dataset'
|
||||
train_img_prefix = 'imgs/'
|
||||
train_anno_file = 'label.json'
|
||||
|
||||
root = 'tests/data/ocr_toy_dataset'
|
||||
img_prefix = f'{root}/imgs'
|
||||
train_anno_file1 = f'{root}/label.txt'
|
||||
|
||||
train1 = dict(
|
||||
type=dataset_type,
|
||||
img_prefix=img_prefix,
|
||||
ann_file=train_anno_file1,
|
||||
loader=dict(
|
||||
type='AnnFileLoader',
|
||||
repeat=100,
|
||||
file_format='txt',
|
||||
file_storage_backend='disk',
|
||||
parser=dict(
|
||||
type='LineStrParser',
|
||||
keys=['filename', 'text'],
|
||||
keys_idx=[0, 1],
|
||||
separator=' ')),
|
||||
train_dataset = dict(
|
||||
type='OCRDataset',
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=train_img_prefix),
|
||||
ann_file=train_anno_file,
|
||||
pipeline=None,
|
||||
test_mode=False)
|
||||
|
||||
train_anno_file2 = f'{root}/label.lmdb'
|
||||
train2 = dict(
|
||||
type=dataset_type,
|
||||
img_prefix=img_prefix,
|
||||
ann_file=train_anno_file2,
|
||||
loader=dict(
|
||||
type='AnnFileLoader',
|
||||
repeat=100,
|
||||
file_format='lmdb',
|
||||
file_storage_backend='disk',
|
||||
parser=dict(type='LineJsonParser', keys=['filename', 'text'])),
|
||||
pipeline=None,
|
||||
test_mode=False)
|
||||
|
||||
test_anno_file1 = f'{root}/label.lmdb'
|
||||
test = dict(
|
||||
type=dataset_type,
|
||||
img_prefix=img_prefix,
|
||||
ann_file=test_anno_file1,
|
||||
loader=dict(
|
||||
type='AnnFileLoader',
|
||||
repeat=1,
|
||||
file_format='lmdb',
|
||||
file_storage_backend='disk',
|
||||
parser=dict(type='LineJsonParser', keys=['filename', 'text'])),
|
||||
test_anno_file = f'{data_root}/label.json'
|
||||
test_dataset = dict(
|
||||
type='OCRDataset',
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=train_img_prefix),
|
||||
ann_file=train_anno_file,
|
||||
pipeline=None,
|
||||
test_mode=True)
|
||||
|
||||
train_list = [train1, train2]
|
||||
train_list = [train_dataset]
|
||||
|
||||
test_list = [test]
|
||||
test_list = [test_dataset]
|
||||
|
|
|
@ -1,13 +1,21 @@
|
|||
_base_ = [
|
||||
'dbnet_r18_fpnc.py',
|
||||
'../../_base_/det_datasets/icdar2015.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_sgd_1200e.py',
|
||||
]
|
||||
|
||||
# dataset settings
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=20), )
|
||||
|
||||
train_pipeline_r18 = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadOCRAnnotations',
|
||||
with_polygon=True,
|
||||
|
@ -32,7 +40,10 @@ train_pipeline_r18 = [
|
|||
]
|
||||
|
||||
test_pipeline_1333_736 = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
color_type='color_ignore_orientation'),
|
||||
dict(type='Resize', scale=(1333, 736), keep_ratio=True),
|
||||
dict(
|
||||
type='PackTextDetInputs',
|
||||
|
@ -40,37 +51,24 @@ test_pipeline_1333_736 = [
|
|||
'instances'))
|
||||
]
|
||||
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'data/icdar2015'
|
||||
|
||||
train_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instances_training.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
||||
pipeline=train_pipeline_r18)
|
||||
|
||||
test_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instances_test.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline_1333_736)
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=16,
|
||||
num_workers=8,
|
||||
persistent_workers=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=train_dataset)
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=train_list,
|
||||
pipeline=train_pipeline_r18))
|
||||
|
||||
val_dataloader = dict(
|
||||
batch_size=16,
|
||||
num_workers=8,
|
||||
persistent_workers=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=test_dataset)
|
||||
dataset=dict(
|
||||
type='ConcatDataset',
|
||||
datasets=test_list,
|
||||
pipeline=test_pipeline_1333_736))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = dict(type='HmeanIOUMetric')
|
||||
|
|
|
@ -1,15 +1,23 @@
|
|||
_base_ = [
|
||||
'dbnet_r50dcnv2_fpnc.py',
|
||||
'../../_base_/det_datasets/icdar2015.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_sgd_1200e.py',
|
||||
]
|
||||
|
||||
# dataset settings
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=20), )
|
||||
|
||||
load_from = 'checkpoints/textdet/dbnet/res50dcnv2_synthtext.pth'
|
||||
|
||||
train_pipeline_r50dcnv2 = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadOCRAnnotations',
|
||||
with_bbox=True,
|
||||
|
@ -34,7 +42,10 @@ train_pipeline_r50dcnv2 = [
|
|||
]
|
||||
|
||||
test_pipeline_4068_1024 = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
color_type='color_ignore_orientation'),
|
||||
dict(type='Resize', scale=(4068, 1024), keep_ratio=True),
|
||||
dict(
|
||||
type='PackTextDetInputs',
|
||||
|
@ -42,37 +53,24 @@ test_pipeline_4068_1024 = [
|
|||
'instances'))
|
||||
]
|
||||
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'data/icdar2015'
|
||||
|
||||
train_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instances_training.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
||||
pipeline=train_pipeline_r50dcnv2)
|
||||
|
||||
test_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instances_test.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline_4068_1024)
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=16,
|
||||
num_workers=8,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=train_dataset)
|
||||
dataset=dict(
|
||||
type='ConcatDataset',
|
||||
datasets=train_list,
|
||||
pipeline=train_pipeline_r50dcnv2))
|
||||
val_dataloader = dict(
|
||||
batch_size=16,
|
||||
num_workers=8,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=test_dataset)
|
||||
dataset=dict(
|
||||
type='ConcatDataset',
|
||||
datasets=test_list,
|
||||
pipeline=test_pipeline_4068_1024))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = dict(type='HmeanIOUMetric')
|
||||
|
|
|
@ -1,11 +1,21 @@
|
|||
_base_ = [
|
||||
'drrg_r50_fpn_unet.py',
|
||||
'../../_base_/det_datasets/icdar2015.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_sgd_1200e.py',
|
||||
]
|
||||
|
||||
# dataset settings
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=20), )
|
||||
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadOCRAnnotations',
|
||||
with_bbox=True,
|
||||
|
@ -55,7 +65,10 @@ train_pipeline = [
|
|||
]
|
||||
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
color_type='color_ignore_orientation'),
|
||||
dict(type='Resize', scale=(1024, 640), keep_ratio=True),
|
||||
dict(
|
||||
type='PackTextDetInputs',
|
||||
|
@ -63,37 +76,20 @@ test_pipeline = [
|
|||
'instances'))
|
||||
]
|
||||
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'data/ctw1500'
|
||||
|
||||
train_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instances_training.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
||||
pipeline=train_pipeline)
|
||||
|
||||
test_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instances_test.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline)
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=4,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=train_dataset)
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=1,
|
||||
num_workers=1,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=test_dataset)
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = dict(type='HmeanIOUMetric')
|
||||
|
|
|
@ -1,15 +1,23 @@
|
|||
_base_ = [
|
||||
'fcenet_r50_fpn.py',
|
||||
'../../_base_/det_datasets/icdar2015.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_sgd_1500e.py',
|
||||
]
|
||||
|
||||
# dataset settings
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(
|
||||
checkpoint=dict(type='CheckpointHook', interval=20),
|
||||
logger=dict(type='LoggerHook', interval=20))
|
||||
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadOCRAnnotations',
|
||||
with_polygon=True,
|
||||
|
@ -55,7 +63,10 @@ train_pipeline = [
|
|||
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
color_type='color_ignore_orientation'),
|
||||
dict(type='Resize', scale=(2260, 2260), keep_ratio=True),
|
||||
dict(
|
||||
type='PackTextDetInputs',
|
||||
|
@ -63,37 +74,20 @@ test_pipeline = [
|
|||
'instances'))
|
||||
]
|
||||
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'data/icdar2015'
|
||||
|
||||
train_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instances_training.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
||||
pipeline=train_pipeline)
|
||||
|
||||
test_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instances_test.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline)
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=8,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=train_dataset)
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=test_dataset)
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = dict(type='HmeanIOUMetric')
|
||||
|
|
|
@ -1,15 +1,23 @@
|
|||
_base_ = [
|
||||
'fcenet_r50_fpn.py',
|
||||
'../../_base_/det_datasets/ctw1500.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_sgd_1500e.py',
|
||||
]
|
||||
|
||||
# dataset settings
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(
|
||||
checkpoint=dict(type='CheckpointHook', interval=20),
|
||||
logger=dict(type='LoggerHook', interval=20))
|
||||
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadOCRAnnotations',
|
||||
with_polygon=True,
|
||||
|
@ -60,7 +68,10 @@ train_pipeline = [
|
|||
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
color_type='color_ignore_orientation'),
|
||||
dict(type='Resize', scale=(1080, 736), keep_ratio=True),
|
||||
dict(
|
||||
type='PackTextDetInputs',
|
||||
|
@ -68,37 +79,20 @@ test_pipeline = [
|
|||
'instances'))
|
||||
]
|
||||
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'data/ctw'
|
||||
|
||||
train_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instances_training.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
||||
pipeline=train_pipeline)
|
||||
|
||||
test_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instances_test.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline)
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=8,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=train_dataset)
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=test_dataset)
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = dict(type='HmeanIOUMetric')
|
||||
|
|
|
@ -1,15 +1,23 @@
|
|||
_base_ = [
|
||||
'ocr_mask_rcnn_r50_fpn_ohem_poly.py',
|
||||
'../../_base_/det_datasets/ctw1500.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_sgd_160e.py',
|
||||
]
|
||||
|
||||
# dataset settings
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(
|
||||
checkpoint=dict(type='CheckpointHook', interval=20),
|
||||
logger=dict(type='LoggerHook', interval=20))
|
||||
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadOCRAnnotations',
|
||||
with_polygon=True,
|
||||
|
@ -37,7 +45,10 @@ train_pipeline = [
|
|||
'scale_factor', 'flip_direction'))
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
color_type='color_ignore_orientation'),
|
||||
dict(type='mmdet.Resize', scale=(1600, 1600), keep_ratio=True),
|
||||
dict(
|
||||
type='PackTextDetInputs',
|
||||
|
@ -45,36 +56,20 @@ test_pipeline = [
|
|||
'instances'))
|
||||
]
|
||||
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'data/ctw'
|
||||
|
||||
train_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instances_training.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
||||
pipeline=train_pipeline)
|
||||
|
||||
test_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instances_test.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline)
|
||||
train_dataloader = dict(
|
||||
batch_size=8,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=train_dataset)
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=test_dataset)
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = dict(type='HmeanIOUMetric')
|
||||
|
|
|
@ -1,15 +1,23 @@
|
|||
_base_ = [
|
||||
'ocr_mask_rcnn_r50_fpn_ohem_poly.py',
|
||||
'../../_base_/det_datasets/icdar2015.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_sgd_160e.py',
|
||||
]
|
||||
|
||||
# dataset settings
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(
|
||||
checkpoint=dict(type='CheckpointHook', interval=20),
|
||||
logger=dict(type='LoggerHook', interval=20))
|
||||
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadOCRAnnotations',
|
||||
with_polygon=True,
|
||||
|
@ -37,7 +45,10 @@ train_pipeline = [
|
|||
'scale_factor', 'flip_direction'))
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
color_type='color_ignore_orientation'),
|
||||
dict(type='mmdet.Resize', scale=(1920, 1920), keep_ratio=True),
|
||||
dict(
|
||||
type='PackTextDetInputs',
|
||||
|
@ -45,37 +56,20 @@ test_pipeline = [
|
|||
'instances'))
|
||||
]
|
||||
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'data/icdar2015'
|
||||
|
||||
train_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instances_test.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
||||
pipeline=train_pipeline)
|
||||
|
||||
test_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instances_test.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline)
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=8,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=train_dataset)
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=test_dataset)
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = dict(type='HmeanIOUMetric')
|
||||
|
|
|
@ -1,15 +1,23 @@
|
|||
_base_ = [
|
||||
'ocr_mask_rcnn_r50_fpn_ohem_poly.py',
|
||||
'../../_base_/det_datasets/icdar2017.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_sgd_160e.py',
|
||||
]
|
||||
|
||||
# dataset settings
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(
|
||||
checkpoint=dict(type='CheckpointHook', interval=20),
|
||||
logger=dict(type='LoggerHook', interval=20))
|
||||
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadOCRAnnotations',
|
||||
with_polygon=True,
|
||||
|
@ -36,7 +44,10 @@ train_pipeline = [
|
|||
'scale_factor', 'flip_direction'))
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
color_type='color_ignore_orientation'),
|
||||
dict(type='mmdet.Resize', scale=(1920, 1920), keep_ratio=True),
|
||||
dict(
|
||||
type='PackTextDetInputs',
|
||||
|
@ -44,37 +55,22 @@ test_pipeline = [
|
|||
'instances'))
|
||||
]
|
||||
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'data/icdar2017'
|
||||
|
||||
train_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instances_training.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
||||
pipeline=train_pipeline)
|
||||
|
||||
test_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instances_test.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline)
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=8,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=train_dataset)
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
|
||||
|
||||
val_dataloader = dict(
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=test_dataset)
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
|
||||
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = dict(type='HmeanIOUMetric')
|
||||
|
|
|
@ -1,11 +1,21 @@
|
|||
_base_ = [
|
||||
'panet_r18_fpem_ffm.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/det_datasets/icdar2015.py',
|
||||
'../../_base_/schedules/schedule_adam_600e.py',
|
||||
]
|
||||
|
||||
# dataset settings
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=20), )
|
||||
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadOCRAnnotations',
|
||||
with_polygon=True,
|
||||
|
@ -28,7 +38,10 @@ train_pipeline = [
|
|||
]
|
||||
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
color_type='color_ignore_orientation'),
|
||||
# TODO Replace with mmcv.RescaleToShort when it's ready
|
||||
dict(
|
||||
type='RescaleToShortAspectJitter',
|
||||
|
@ -42,37 +55,20 @@ test_pipeline = [
|
|||
'instances'))
|
||||
]
|
||||
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'data/det/icdar2015'
|
||||
|
||||
train_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instance_training.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
filter_cfg=dict(filter_empty_gt=True),
|
||||
pipeline=train_pipeline)
|
||||
|
||||
test_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instance_test.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline)
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=8,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=train_dataset)
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=test_dataset)
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = dict(
|
||||
|
|
|
@ -1,13 +1,25 @@
|
|||
_base_ = [
|
||||
'psenet_r50_fpnf.py',
|
||||
'../../_base_/det_datasets/icdar2015.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_adam_step_600e.py',
|
||||
]
|
||||
|
||||
# dataset settings
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(
|
||||
checkpoint=dict(type='CheckpointHook', interval=20),
|
||||
logger=dict(type='LoggerHook', interval=20))
|
||||
|
||||
model = {{_base_.model_quad}}
|
||||
|
||||
train_pipeline_icdar2015 = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadOCRAnnotations',
|
||||
with_polygon=True,
|
||||
|
@ -29,7 +41,10 @@ train_pipeline_icdar2015 = [
|
|||
]
|
||||
|
||||
test_pipeline_icdar2015 = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
color_type='color_ignore_orientation'),
|
||||
dict(type='Resize', scale=(2240, 2240), keep_ratio=True),
|
||||
dict(
|
||||
type='PackTextDetInputs',
|
||||
|
@ -37,37 +52,24 @@ test_pipeline_icdar2015 = [
|
|||
'instances'))
|
||||
]
|
||||
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'data/icdar2015'
|
||||
|
||||
train_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instances_training.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
||||
pipeline=train_pipeline_icdar2015)
|
||||
|
||||
test_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instances_test.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline_icdar2015)
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=16,
|
||||
num_workers=8,
|
||||
persistent_workers=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=train_dataset)
|
||||
dataset=dict(
|
||||
type='ConcatDataset',
|
||||
datasets=train_list,
|
||||
pipeline=train_pipeline_icdar2015))
|
||||
val_dataloader = dict(
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=test_dataset)
|
||||
dataset=dict(
|
||||
type='ConcatDataset',
|
||||
datasets=test_list,
|
||||
pipeline=test_pipeline_icdar2015))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = dict(type='HmeanIOUMetric')
|
||||
|
|
|
@ -1,11 +1,23 @@
|
|||
_base_ = [
|
||||
'textsnake_r50_fpn_unet.py',
|
||||
'../../_base_/det_datasets/ctw1500.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_sgd_1200e.py',
|
||||
]
|
||||
|
||||
# dataset settings
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(
|
||||
checkpoint=dict(type='CheckpointHook', interval=20),
|
||||
logger=dict(type='LoggerHook', interval=20))
|
||||
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadOCRAnnotations',
|
||||
with_bbox=True,
|
||||
|
@ -46,7 +58,10 @@ train_pipeline = [
|
|||
]
|
||||
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
color_type='color_ignore_orientation'),
|
||||
dict(type='Resize', scale=(1333, 736), keep_ratio=True),
|
||||
dict(
|
||||
type='PackTextDetInputs',
|
||||
|
@ -54,37 +69,20 @@ test_pipeline = [
|
|||
'instances'))
|
||||
]
|
||||
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'data/ctw1500'
|
||||
|
||||
train_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instances_training.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
||||
pipeline=train_pipeline)
|
||||
|
||||
test_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instances_test.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline)
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=4,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=train_dataset)
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=1,
|
||||
num_workers=1,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=test_dataset)
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = dict(type='HmeanIOUMetric')
|
||||
|
|
|
@ -1,14 +1,15 @@
|
|||
_base_ = [
|
||||
'../../_base_/recog_datasets/ST_MJ_train.py',
|
||||
'../../_base_/recog_datasets/academic_test.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_adam_step_20e.py',
|
||||
]
|
||||
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=100))
|
||||
|
||||
# dataset settings
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'data/recog/'
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=100))
|
||||
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
||||
|
@ -80,26 +81,13 @@ test_pipeline = [
|
|||
'instances'))
|
||||
]
|
||||
|
||||
dataset_mj = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path='mnt/ramdisk/max/90kDICT32px/'),
|
||||
ann_file='data/MJ/label.json',
|
||||
pipeline=train_pipeline)
|
||||
dataset_st = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(
|
||||
img_path='SynthText/synthtext/SynthText_patch_horizontal/'),
|
||||
ann_file='data/ST/alphanumeric_labels.json',
|
||||
pipeline=train_pipeline)
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=192 * 4,
|
||||
num_workers=32,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=dict(type='ConcatDataset', datasets=[dataset_mj, dataset_st]))
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
|
||||
|
||||
val_dataloader = dict(
|
||||
batch_size=192,
|
||||
|
@ -108,12 +96,7 @@ val_dataloader = dict(
|
|||
drop_last=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path='testset/testset/IIIT5K/'),
|
||||
ann_file='label.json',
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline))
|
||||
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = dict(type='WordMetric', mode=['ignore_case_symbol'])
|
||||
|
|
|
@ -2,15 +2,16 @@
|
|||
_base_ = [
|
||||
'crnn.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/recog_datasets/MJ_train.py',
|
||||
'../../_base_/recog_datasets/academic_test.py',
|
||||
'../../_base_/schedules/schedule_adadelta_5e.py',
|
||||
]
|
||||
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=50), )
|
||||
|
||||
# dataset settings
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'data/recog/'
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=50), )
|
||||
|
||||
train_pipeline = [
|
||||
dict(
|
||||
|
@ -47,11 +48,7 @@ train_dataloader = dict(
|
|||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=None),
|
||||
ann_file='train_label.json',
|
||||
pipeline=train_pipeline))
|
||||
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
|
||||
|
||||
val_dataloader = dict(
|
||||
batch_size=1,
|
||||
|
@ -60,12 +57,7 @@ val_dataloader = dict(
|
|||
drop_last=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=None),
|
||||
ann_file='test_label.json',
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline))
|
||||
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = [
|
||||
|
|
|
@ -1,15 +1,16 @@
|
|||
_base_ = [
|
||||
'master.py',
|
||||
'../../_base_/recog_datasets/ST_SA_MJ_train.py',
|
||||
'../../_base_/recog_datasets/academic_test.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_adam_step_12e.py',
|
||||
]
|
||||
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=50), )
|
||||
|
||||
# dataset settings
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'data/recog/'
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=50), )
|
||||
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
||||
|
@ -47,11 +48,7 @@ train_dataloader = dict(
|
|||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=None),
|
||||
ann_file='train_label.json',
|
||||
pipeline=train_pipeline))
|
||||
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
|
||||
|
||||
val_dataloader = dict(
|
||||
batch_size=128,
|
||||
|
@ -60,12 +57,7 @@ val_dataloader = dict(
|
|||
drop_last=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=None),
|
||||
ann_file='test_label.json',
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline))
|
||||
type='ConcatDataset', datasets=test_list, pipeline=train_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = [
|
||||
|
|
|
@ -1,15 +1,15 @@
|
|||
_base_ = [
|
||||
'master.py',
|
||||
'../../_base_/recog_datasets/toy_data.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_adam_step_12e.py',
|
||||
]
|
||||
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=50), )
|
||||
|
||||
# dataset settings
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'test/data/recog_toy_dataset'
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=50), )
|
||||
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
||||
|
@ -47,11 +47,7 @@ train_dataloader = dict(
|
|||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=None),
|
||||
ann_file='label.json',
|
||||
pipeline=train_pipeline))
|
||||
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
|
||||
|
||||
val_dataloader = dict(
|
||||
batch_size=2,
|
||||
|
@ -60,12 +56,7 @@ val_dataloader = dict(
|
|||
drop_last=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=None),
|
||||
ann_file='label.json',
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline))
|
||||
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = [
|
||||
|
|
|
@ -1,5 +1,7 @@
|
|||
_base_ = [
|
||||
'nrtr_modality_transform.py', '../../_base_/default_runtime.py',
|
||||
'nrtr_modality_transform.py', '../../_base_/recog_datasets/ST_MJ_train.py',
|
||||
'../../_base_/recog_datasets/academic_test.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_adam_step_6e.py'
|
||||
]
|
||||
|
||||
|
@ -7,9 +9,10 @@ optimizer = dict(type='Adam', lr=3e-4)
|
|||
default_hooks = dict(logger=dict(type='LoggerHook', interval=50))
|
||||
|
||||
# dataset settings
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'data/recog/'
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=100))
|
||||
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
||||
|
@ -47,11 +50,7 @@ train_dataloader = dict(
|
|||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=None),
|
||||
ann_file='train_label.json',
|
||||
pipeline=train_pipeline))
|
||||
type='ConcatDataset', datasets=train_list, pipeline=test_pipeline))
|
||||
|
||||
val_dataloader = dict(
|
||||
batch_size=128,
|
||||
|
@ -60,12 +59,7 @@ val_dataloader = dict(
|
|||
drop_last=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=None),
|
||||
ann_file='test_label.json',
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline))
|
||||
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = [
|
||||
|
|
|
@ -3,12 +3,11 @@ _base_ = [
|
|||
'../../_base_/schedules/schedule_adam_step_6e.py'
|
||||
]
|
||||
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=50))
|
||||
|
||||
# dataset settings
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'test/data/recog_toy_dataset'
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=100))
|
||||
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
||||
|
@ -46,11 +45,7 @@ train_dataloader = dict(
|
|||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=None),
|
||||
ann_file='label.json',
|
||||
pipeline=train_pipeline))
|
||||
type='ConcatDataset', datasets=train_list, pipeline=test_pipeline))
|
||||
|
||||
val_dataloader = dict(
|
||||
batch_size=128,
|
||||
|
@ -59,12 +54,8 @@ val_dataloader = dict(
|
|||
drop_last=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=None),
|
||||
ann_file='label.json',
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline))
|
||||
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
|
||||
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = [
|
||||
|
|
|
@ -1,10 +1,17 @@
|
|||
_base_ = [
|
||||
'../../_base_/recog_datasets/ST_MJ_train.py',
|
||||
'../../_base_/recog_datasets/academic_test.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_adam_step_6e.py'
|
||||
]
|
||||
|
||||
optimizer = dict(type='Adam', lr=3e-4)
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=50))
|
||||
|
||||
# dataset settings
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=100))
|
||||
|
||||
dictionary = dict(
|
||||
type='Dictionary',
|
||||
|
@ -34,11 +41,6 @@ model = dict(
|
|||
preprocess_cfg=dict(
|
||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]))
|
||||
|
||||
# dataset settings
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'data/recog/'
|
||||
file_client_args = dict(backend='disk')
|
||||
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
||||
dict(type='LoadOCRAnnotations', with_text=True),
|
||||
|
@ -75,11 +77,7 @@ train_dataloader = dict(
|
|||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=None),
|
||||
ann_file='train_label.json',
|
||||
pipeline=train_pipeline))
|
||||
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
|
||||
|
||||
val_dataloader = dict(
|
||||
batch_size=128,
|
||||
|
@ -88,12 +86,7 @@ val_dataloader = dict(
|
|||
drop_last=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=None),
|
||||
ann_file='test_label.json',
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline))
|
||||
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = [
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
_base_ = [
|
||||
'../../_base_/recog_datasets/ST_MJ_train.py',
|
||||
'../../_base_/recog_datasets/academic_test.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_adam_step_6e.py'
|
||||
]
|
||||
|
@ -6,6 +8,12 @@ _base_ = [
|
|||
optimizer = dict(type='Adam', lr=3e-4)
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=50))
|
||||
|
||||
# dataset settings
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=100))
|
||||
|
||||
dictionary = dict(
|
||||
type='Dictionary',
|
||||
dict_file='dicts/english_digits_symbols.txt',
|
||||
|
@ -34,11 +42,6 @@ model = dict(
|
|||
preprocess_cfg=dict(
|
||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]))
|
||||
|
||||
# dataset settings
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'data/recog/'
|
||||
file_client_args = dict(backend='disk')
|
||||
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
||||
dict(type='LoadOCRAnnotations', with_text=True),
|
||||
|
@ -75,11 +78,7 @@ train_dataloader = dict(
|
|||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=None),
|
||||
ann_file='train_label.json',
|
||||
pipeline=train_pipeline))
|
||||
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
|
||||
|
||||
val_dataloader = dict(
|
||||
batch_size=128,
|
||||
|
@ -88,12 +87,8 @@ val_dataloader = dict(
|
|||
drop_last=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=None),
|
||||
ann_file='test_label.json',
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline))
|
||||
type='ConcatDataset', datasets=test_list, pipeline=train_pipeline))
|
||||
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = [
|
||||
|
|
|
@ -1,12 +1,15 @@
|
|||
_base_ = [
|
||||
'robust_scanner.py', '../../_base_/default_runtime.py',
|
||||
'robust_scanner.py', '../../_base_/recog_datasets/ST_SA_MJ_real_train.py',
|
||||
'../../_base_/recog_datasets/academic_test.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_adam_step_5e.py'
|
||||
]
|
||||
|
||||
# dataset settings
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'data/recog'
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=100))
|
||||
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
||||
|
@ -38,11 +41,7 @@ train_dataloader = dict(
|
|||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=''),
|
||||
ann_file='train_label.json',
|
||||
pipeline=train_pipeline))
|
||||
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
|
||||
|
||||
val_dataloader = dict(
|
||||
batch_size=1,
|
||||
|
@ -51,12 +50,7 @@ val_dataloader = dict(
|
|||
drop_last=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=''),
|
||||
ann_file='test_label.json',
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline))
|
||||
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = [
|
||||
|
|
|
@ -1,12 +1,16 @@
|
|||
_base_ = [
|
||||
'sar.py',
|
||||
'../../_base_/recog_datasets/ST_SA_MJ_real_train.py',
|
||||
'../../_base_/recog_datasets/academic_test.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_adam_step_5e.py',
|
||||
]
|
||||
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'data/recog/'
|
||||
# dataset settings
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=100))
|
||||
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
||||
|
@ -44,11 +48,7 @@ train_dataloader = dict(
|
|||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=None),
|
||||
ann_file='train_label.json',
|
||||
pipeline=train_pipeline))
|
||||
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
|
||||
|
||||
val_dataloader = dict(
|
||||
batch_size=1,
|
||||
|
@ -57,12 +57,7 @@ val_dataloader = dict(
|
|||
drop_last=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=None),
|
||||
ann_file='test_label.json',
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline))
|
||||
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = [
|
||||
|
|
|
@ -1,12 +1,16 @@
|
|||
_base_ = [
|
||||
'sar.py',
|
||||
'../../_base_/recog_datasets/ST_SA_MJ_real_train.py',
|
||||
'../../_base_/recog_datasets/academic_test.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_adam_step_5e.py',
|
||||
]
|
||||
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'data/recog/'
|
||||
# dataset settings
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=100))
|
||||
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
||||
|
@ -38,11 +42,7 @@ train_dataloader = dict(
|
|||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=None),
|
||||
ann_file='train_label.json',
|
||||
pipeline=train_pipeline))
|
||||
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
|
||||
|
||||
val_dataloader = dict(
|
||||
batch_size=1,
|
||||
|
@ -51,12 +51,7 @@ val_dataloader = dict(
|
|||
drop_last=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=None),
|
||||
ann_file='test_label.json',
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline))
|
||||
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = [
|
||||
|
|
|
@ -1,15 +1,19 @@
|
|||
_base_ = [
|
||||
'satrn.py'
|
||||
'satrn.py',
|
||||
'../../_base_/recog_datasets/ST_MJ_train.py',
|
||||
'../../_base_/recog_datasets/academic_test.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_adam_step_5e.py',
|
||||
]
|
||||
|
||||
# dataset settings
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=50))
|
||||
|
||||
# dataset settings
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'tests/data/ocr_toy_dataset'
|
||||
file_client_args = dict(backend='petrel')
|
||||
# optimizer
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=3e-4))
|
||||
|
||||
model = dict(
|
||||
type='SATRN',
|
||||
|
@ -38,9 +42,6 @@ model = dict(
|
|||
max_seq_len=25,
|
||||
postprocessor=dict(type='AttentionPostprocessor')))
|
||||
|
||||
# optimizer
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=3e-4))
|
||||
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
||||
dict(type='LoadOCRAnnotations', with_text=True),
|
||||
|
@ -66,11 +67,7 @@ train_dataloader = dict(
|
|||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=None),
|
||||
ann_file='train_label.json',
|
||||
pipeline=train_pipeline))
|
||||
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
|
||||
|
||||
val_dataloader = dict(
|
||||
batch_size=64,
|
||||
|
@ -79,12 +76,7 @@ val_dataloader = dict(
|
|||
drop_last=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=None),
|
||||
ann_file='test_label.json',
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline))
|
||||
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = [
|
||||
|
|
Loading…
Reference in New Issue