[TODO] Updata det_datasets & recog_datasets

pull/1178/head
jiangqing.vendor 2022-07-15 11:51:55 +00:00 committed by gaotongxiao
parent 254dbdd18a
commit dc180443b8
37 changed files with 524 additions and 804 deletions

View File

@ -1,18 +1,23 @@
dataset_type = 'IcdarDataset'
data_root = 'data/ctw1500'
data_root = 'data/det/ctw1500'
train = dict(
type=dataset_type,
ann_file=f'{data_root}/instances_training.json',
img_prefix=f'{data_root}/imgs',
train_anno_path = 'instances_training.json'
test_anno_path = 'instances_test.json'
train_dataset = dict(
type='OCRDataset',
data_root=data_root,
ann_file=train_anno_path,
data_prefix=dict(img_path='imgs/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=None)
test = dict(
type=dataset_type,
ann_file=f'{data_root}/instances_test.json',
img_prefix=f'{data_root}/imgs',
test_dataset = dict(
type='OCRDataset',
data_root=data_root,
ann_file=test_anno_path,
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=None)
train_list = [train]
test_list = [test]
train_list = [train_dataset]
test_list = [test_dataset]

View File

@ -1,18 +1,23 @@
dataset_type = 'IcdarDataset'
data_root = 'data/icdar2015'
data_root = 'data/det/icdar2015'
train = dict(
type=dataset_type,
ann_file=f'{data_root}/instances_training.json',
img_prefix=f'{data_root}/imgs',
train_anno_path = 'instances_training.json'
test_anno_path = 'instances_test.json'
train_dataset = dict(
type='OCRDataset',
data_root=data_root,
ann_file=train_anno_path,
data_prefix=dict(img_path='imgs/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=None)
test = dict(
type=dataset_type,
ann_file=f'{data_root}/instances_test.json',
img_prefix=f'{data_root}/imgs',
test_dataset = dict(
type='OCRDataset',
data_root=data_root,
ann_file=test_anno_path,
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=None)
train_list = [train]
test_list = [test]
train_list = [train_dataset]
test_list = [test_dataset]

View File

@ -1,18 +1,23 @@
dataset_type = 'IcdarDataset'
data_root = 'data/icdar2017'
data_root = 'data/det/icdar2017'
train = dict(
type=dataset_type,
ann_file=f'{data_root}/instances_training.json',
img_prefix=f'{data_root}/imgs',
train_anno_path = 'instances_training.json'
test_anno_path = 'instances_test.json'
train_dataset = dict(
type='OCRDataset',
data_root=data_root,
ann_file=train_anno_path,
data_prefix=dict(img_path='imgs/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=None)
test = dict(
type=dataset_type,
ann_file=f'{data_root}/instances_val.json',
img_prefix=f'{data_root}/imgs',
test_dataset = dict(
type='OCRDataset',
data_root=data_root,
ann_file=test_anno_path,
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=None)
train_list = [train]
test_list = [test]
train_list = [train_dataset]
test_list = [test_dataset]

View File

@ -1,18 +1,23 @@
dataset_type = 'TextDetDataset'
data_root = 'data/synthtext'
data_root = 'data/det/synthtext'
train = dict(
type=dataset_type,
ann_file=f'{data_root}/instances_training.lmdb',
loader=dict(
type='AnnFileLoader',
repeat=1,
file_format='lmdb',
parser=dict(
type='LineJsonParser',
keys=['file_name', 'height', 'width', 'annotations'])),
img_prefix=f'{data_root}/imgs',
train_anno_path = 'instances_training.json'
test_anno_path = 'instances_test.json'
train_dataset = dict(
type='OCRDataset',
data_root=data_root,
ann_file=train_anno_path,
data_prefix=dict(img_path='imgs/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=None)
train_list = [train]
test_list = [train]
test_dataset = dict(
type='OCRDataset',
data_root=data_root,
ann_file=test_anno_path,
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=None)
train_list = [train_dataset]
test_list = [test_dataset]

View File

@ -1,41 +1,23 @@
root = 'tests/data/toy_dataset'
data_root = 'tests/data/det_toy_dataset'
# dataset with type='TextDetDataset'
train1 = dict(
type='TextDetDataset',
img_prefix=f'{root}/imgs',
ann_file=f'{root}/instances_test.txt',
loader=dict(
type='AnnFileLoader',
repeat=4,
file_format='txt',
parser=dict(
type='LineJsonParser',
keys=['file_name', 'height', 'width', 'annotations'])),
pipeline=None,
test_mode=False)
train_anno_path = 'instances_test.json'
test_anno_path = 'instances_test.json'
# dataset with type='IcdarDataset'
train2 = dict(
type='IcdarDataset',
ann_file=f'{root}/instances_test.json',
img_prefix=f'{root}/imgs',
train_dataset = dict(
type='OCRDataset',
data_root=data_root,
ann_file=train_anno_path,
data_prefix=dict(img_path='imgs/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=None)
test = dict(
type='TextDetDataset',
img_prefix=f'{root}/imgs',
ann_file=f'{root}/instances_test.txt',
loader=dict(
type='AnnFileLoader',
repeat=1,
file_format='txt',
parser=dict(
type='LineJsonParser',
keys=['file_name', 'height', 'width', 'annotations'])),
pipeline=None,
test_mode=True)
test_dataset = dict(
type='OCRDataset',
data_root=data_root,
ann_file=test_anno_path,
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=None)
train_list = [train1, train2]
test_list = [test]
train_list = [train_dataset]
test_list = [test_dataset]

View File

@ -1,21 +1,15 @@
# Text Recognition Training set, including:
# Synthetic Datasets: Syn90k
train_root = 'data/mixture/Syn90k'
train_img_prefix = f'{train_root}/mnt/ramdisk/max/90kDICT32px'
train_ann_file = f'{train_root}/label.lmdb'
data_root = 'data/recog'
train_img_prefix1 = 'Syn90k/mnt/ramdisk/max/90kDICT32px'
train_ann_file1 = 'Syn90k/label.json'
file_client_args = dict(backend='disk')
train = dict(
type='OCRDataset',
img_prefix=train_img_prefix,
ann_file=train_ann_file,
loader=dict(
type='AnnFileLoader',
repeat=1,
file_format='lmdb',
parser=dict(type='LineJsonParser', keys=['filename', 'text'])),
pipeline=None,
test_mode=False)
data_root=data_root,
data_prefix=dict(img_path=train_img_prefix1),
ann_file=train_ann_file1,
test_mode=False,
pipeline=None)
train_list = [train]

View File

@ -2,30 +2,24 @@
# Synthetic Datasets: SynthText, Syn90k
# Both annotations are filtered so that
# only alphanumeric terms are left
train_root = 'data/mixture'
train_img_prefix1 = f'{train_root}/Syn90k/mnt/ramdisk/max/90kDICT32px'
train_ann_file1 = f'{train_root}/Syn90k/label.lmdb'
data_root = 'data/recog'
train_img_prefix1 = 'Syn90k/mnt/ramdisk/max/90kDICT32px'
train_ann_file1 = 'Syn90k/label.json'
file_client_args = dict(backend='disk')
train1 = dict(
type='OCRDataset',
img_prefix=train_img_prefix1,
data_root=data_root,
data_prefix=dict(img_path=train_img_prefix1),
ann_file=train_ann_file1,
loader=dict(
type='AnnFileLoader',
repeat=1,
file_format='lmdb',
parser=dict(type='LineJsonParser', keys=['filename', 'text'])),
pipeline=None,
test_mode=False)
train_img_prefix2 = f'{train_root}/SynthText/' + \
'synthtext/SynthText_patch_horizontal'
train_ann_file2 = f'{train_root}/SynthText/alphanumeric_label.lmdb'
test_mode=False,
pipeline=None)
train_img_prefix2 = 'SynthText/synthtext/SynthText_patch_horizontal'
train_ann_file2 = 'SynthText/alphanumeric_label.json'
train2 = {key: value for key, value in train1.items()}
train2['img_prefix'] = train_img_prefix2
train2['ann_file'] = train_ann_file2
train2['data_root'] = data_root
train2['data_prefix'] = dict(img_path=train_img_prefix2),
train2['ann_file'] = dict(img_path=train_ann_file2),
train_list = [train1, train2]

View File

@ -1,29 +1,25 @@
# Text Recognition Training set, including:
# Synthetic Datasets: SynthText, Syn90k
train_root = 'data/mixture'
data_root = 'data/recog'
train_img_prefix1 = f'{train_root}/Syn90k/mnt/ramdisk/max/90kDICT32px'
train_ann_file1 = f'{train_root}/Syn90k/label.lmdb'
train_img_prefix1 = 'Syn90k/mnt/ramdisk/max/90kDICT32px'
train_ann_file1 = 'Syn90k/label.json'
file_client_args = dict(backend='disk')
train1 = dict(
type='OCRDataset',
img_prefix=train_img_prefix1,
data_root=data_root,
data_prefix=dict(img_path=train_img_prefix1),
ann_file=train_ann_file1,
loader=dict(
type='AnnFileLoader',
repeat=1,
file_format='lmdb',
parser=dict(type='LineJsonParser', keys=['filename', 'text'])),
pipeline=None,
test_mode=False)
train_img_prefix2 = f'{train_root}/SynthText/' + \
'synthtext/SynthText_patch_horizontal'
train_ann_file2 = f'{train_root}/SynthText/label.lmdb'
test_mode=False,
pipeline=None)
train_img_prefix2 = 'SynthText/synthtext/SynthText_patch_horizontal'
train_ann_file2 = 'SynthText/label.json'
train2 = {key: value for key, value in train1.items()}
train2['img_prefix'] = train_img_prefix2
train2['ann_file'] = train_ann_file2
train2['data_root'] = data_root
train2['data_prefix'] = dict(img_path=train_img_prefix2),
train2['ann_file'] = dict(img_path=train_ann_file2),
train_list = [train1, train2]

View File

@ -1,81 +1,60 @@
# Text Recognition Training set, including:
# Synthetic Datasets: SynthText, SynthAdd, Syn90k
# Real Dataset: IC11, IC13, IC15, COCO-Test, IIIT5k
data_root = 'data/recog'
train_prefix = 'data/mixture'
train_img_prefix1 = 'icdar_2011'
train_img_prefix2 = 'icdar_2013'
train_img_prefix3 = 'icdar_2015'
train_img_prefix4 = 'coco_text'
train_img_prefix5 = 'IIIT5K'
train_img_prefix6 = 'SynthText_Add'
train_img_prefix7 = 'SynthText'
train_img_prefix8 = 'Syn90k'
train_img_prefix1 = f'{train_prefix}/icdar_2011'
train_img_prefix2 = f'{train_prefix}/icdar_2013'
train_img_prefix3 = f'{train_prefix}/icdar_2015'
train_img_prefix4 = f'{train_prefix}/coco_text'
train_img_prefix5 = f'{train_prefix}/IIIT5K'
train_img_prefix6 = f'{train_prefix}/SynthText_Add'
train_img_prefix7 = f'{train_prefix}/SynthText'
train_img_prefix8 = f'{train_prefix}/Syn90k'
train_ann_file1 = f'{train_prefix}/icdar_2011/train_label.txt',
train_ann_file2 = f'{train_prefix}/icdar_2013/train_label.txt',
train_ann_file3 = f'{train_prefix}/icdar_2015/train_label.txt',
train_ann_file4 = f'{train_prefix}/coco_text/train_label.txt',
train_ann_file5 = f'{train_prefix}/IIIT5K/train_label.txt',
train_ann_file6 = f'{train_prefix}/SynthText_Add/label.txt',
train_ann_file7 = f'{train_prefix}/SynthText/shuffle_labels.txt',
train_ann_file8 = f'{train_prefix}/Syn90k/shuffle_labels.txt'
train_ann_file1 = 'icdar_2011/train_label.json',
train_ann_file2 = 'icdar_2013/train_label.json',
train_ann_file3 = 'icdar_2015/train_label.json',
train_ann_file4 = 'coco_text/train_label.json',
train_ann_file5 = 'IIIT5K/train_label.json',
train_ann_file6 = 'SynthText_Add/label.json',
train_ann_file7 = 'SynthText/shuffle_labels.json',
train_ann_file8 = 'Syn90k/shuffle_labels.json'
train1 = dict(
type='OCRDataset',
img_prefix=train_img_prefix1,
data_root=data_root,
data_prefix=dict(img_path=train_img_prefix1),
ann_file=train_ann_file1,
loader=dict(
type='AnnFileLoader',
repeat=20,
file_format='txt',
parser=dict(
type='LineStrParser',
keys=['filename', 'text'],
keys_idx=[0, 1],
separator=' ')),
pipeline=None,
test_mode=False)
test_mode=False,
pipeline=None)
train2 = {key: value for key, value in train1.items()}
train2['img_prefix'] = train_img_prefix2
train2['data_prefix'] = dict(img_path=train_img_prefix2)
train2['ann_file'] = train_ann_file2
train3 = {key: value for key, value in train1.items()}
train3['img_prefix'] = train_img_prefix3
train3['img_prefix'] = dict(img_path=train_img_prefix3)
train3['ann_file'] = train_ann_file3
train4 = {key: value for key, value in train1.items()}
train4['img_prefix'] = train_img_prefix4
train4['img_prefix'] = dict(img_path=train_img_prefix4)
train4['ann_file'] = train_ann_file4
train5 = {key: value for key, value in train1.items()}
train5['img_prefix'] = train_img_prefix5
train5['img_prefix'] = dict(img_path=train_img_prefix5)
train5['ann_file'] = train_ann_file5
train6 = dict(
type='OCRDataset',
img_prefix=train_img_prefix6,
ann_file=train_ann_file6,
loader=dict(
type='AnnFileLoader',
repeat=1,
file_format='txt',
parser=dict(
type='LineStrParser',
keys=['filename', 'text'],
keys_idx=[0, 1],
separator=' ')),
pipeline=None,
test_mode=False)
train6 = {key: value for key, value in train1.items()}
train6['img_prefix'] = dict(img_path=train_img_prefix6)
train6['ann_file'] = train_ann_file6
train7 = {key: value for key, value in train6.items()}
train7['img_prefix'] = train_img_prefix7
train7 = {key: value for key, value in train1.items()}
train7['img_prefix'] = dict(img_path=train_img_prefix7)
train7['ann_file'] = train_ann_file7
train8 = {key: value for key, value in train6.items()}
train8['img_prefix'] = train_img_prefix8
train8 = {key: value for key, value in train1.items()}
train8['img_prefix'] = dict(img_path=train_img_prefix8)
train8['ann_file'] = train_ann_file8
train_list = [train1, train2, train3, train4, train5, train6, train7, train8]

View File

@ -1,48 +1,30 @@
# Text Recognition Training set, including:
# Synthetic Datasets: SynthText, Syn90k
data_root = 'data/recog'
train_root = 'data/mixture'
train_img_prefix1 = 'SynthText_Add'
train_img_prefix2 = 'SynthText/synthtext/' + \
'SynthText_patch_horizontal'
train_img_prefix3 = 'Syn90k/mnt/ramdisk/max/90kDICT32px'
train_img_prefix1 = f'{train_root}/Syn90k/mnt/ramdisk/max/90kDICT32px'
train_ann_file1 = f'{train_root}/Syn90k/label.lmdb'
train_ann_file1 = 'SynthText_Add/label.json',
train_ann_file2 = 'SynthText/label.json',
train_ann_file3 = 'Syn90k/label.json'
train1 = dict(
type='OCRDataset',
img_prefix=train_img_prefix1,
data_root=data_root,
data_prefix=dict(img_path=train_img_prefix1),
ann_file=train_ann_file1,
loader=dict(
type='AnnFileLoader',
repeat=1,
file_format='lmdb',
parser=dict(type='LineJsonParser', keys=['filename', 'text'])),
pipeline=None,
test_mode=False)
train_img_prefix2 = f'{train_root}/SynthText/' + \
'synthtext/SynthText_patch_horizontal'
train_ann_file2 = f'{train_root}/SynthText/label.lmdb'
train_img_prefix3 = f'{train_root}/SynthText_Add'
train_ann_file3 = f'{train_root}/SynthText_Add/label.txt'
test_mode=False,
pipeline=None)
train2 = {key: value for key, value in train1.items()}
train2['img_prefix'] = train_img_prefix2
train2['data_prefix'] = dict(img_path=train_img_prefix2)
train2['ann_file'] = train_ann_file2
train3 = dict(
type='OCRDataset',
img_prefix=train_img_prefix3,
ann_file=train_ann_file3,
loader=dict(
type='AnnFileLoader',
repeat=1,
file_format='txt',
parser=dict(
type='LineStrParser',
keys=['filename', 'text'],
keys_idx=[0, 1],
separator=' ')),
pipeline=None,
test_mode=False)
train3 = {key: value for key, value in train1.items()}
train3['img_prefix'] = dict(img_path=train_img_prefix3)
train3['ann_file'] = train_ann_file3
train_list = [train1, train2, train3]

View File

@ -1,23 +0,0 @@
# Text Recognition Training set, including:
# Synthetic Datasets: SynthText (with character level boxes)
train_img_root = 'data/mixture'
train_img_prefix = f'{train_img_root}/SynthText'
train_ann_file = f'{train_img_root}/SynthText/instances_train.txt'
train = dict(
type='OCRSegDataset',
img_prefix=train_img_prefix,
ann_file=train_ann_file,
loader=dict(
type='AnnFileLoader',
repeat=1,
file_format='txt',
parser=dict(
type='LineJsonParser', keys=['file_name', 'annotations', 'text'])),
pipeline=None,
test_mode=False)
train_list = [train]

View File

@ -2,56 +2,48 @@
# Regular Datasets: IIIT5K, SVT, IC13
# Irregular Datasets: IC15, SVTP, CT80
test_root = 'data/mixture'
test_root = 'data/recog'
test_img_prefix1 = f'{test_root}/IIIT5K/'
test_img_prefix2 = f'{test_root}/svt/'
test_img_prefix3 = f'{test_root}/icdar_2013/'
test_img_prefix4 = f'{test_root}/icdar_2015/'
test_img_prefix5 = f'{test_root}/svtp/'
test_img_prefix6 = f'{test_root}/ct80/'
test_img_prefix1 = 'IIIT5K/'
test_img_prefix2 = 'svt/'
test_img_prefix3 = 'icdar_2013/'
test_img_prefix4 = 'icdar_2015/'
test_img_prefix5 = 'svtp/'
test_img_prefix6 = 'ct80/'
test_ann_file1 = f'{test_root}/IIIT5K/test_label.txt'
test_ann_file2 = f'{test_root}/svt/test_label.txt'
test_ann_file3 = f'{test_root}/icdar_2013/test_label_1015.txt'
test_ann_file4 = f'{test_root}/icdar_2015/test_label.txt'
test_ann_file5 = f'{test_root}/svtp/test_label.txt'
test_ann_file6 = f'{test_root}/ct80/test_label.txt'
test_ann_file1 = 'IIIT5K/test_label.josn'
test_ann_file2 = 'svt/test_label.josn'
test_ann_file3 = 'icdar_2013/test_label_1015.josn'
test_ann_file4 = 'icdar_2015/test_label.josn'
test_ann_file5 = 'svtp/test_label.josn'
test_ann_file6 = 'ct80/test_label.josn'
test1 = dict(
type='OCRDataset',
img_prefix=test_img_prefix1,
data_root=test_root,
data_prefix=dict(img_path=test_img_prefix1),
ann_file=test_ann_file1,
loader=dict(
type='AnnFileLoader',
repeat=1,
file_format='txt',
parser=dict(
type='LineStrParser',
keys=['filename', 'text'],
keys_idx=[0, 1],
separator=' ')),
pipeline=None,
test_mode=True)
test_mode=True,
pipeline=None)
test2 = {key: value for key, value in test1.items()}
test2['img_prefix'] = test_img_prefix2
test2['data_prefix'] = dict(img_path=test_img_prefix2)
test2['ann_file'] = test_ann_file2
test3 = {key: value for key, value in test1.items()}
test3['img_prefix'] = test_img_prefix3
test3['data_prefix'] = dict(img_path=test_img_prefix3)
test3['ann_file'] = test_ann_file3
test4 = {key: value for key, value in test1.items()}
test4['img_prefix'] = test_img_prefix4
test4['data_prefix'] = dict(img_path=test_img_prefix4)
test4['ann_file'] = test_ann_file4
test5 = {key: value for key, value in test1.items()}
test5['img_prefix'] = test_img_prefix5
test5['data_prefix'] = dict(img_path=test_img_prefix5)
test5['ann_file'] = test_ann_file5
test6 = {key: value for key, value in test1.items()}
test6['img_prefix'] = test_img_prefix6
test6['data_prefix'] = dict(img_path=test_img_prefix6)
test6['ann_file'] = test_ann_file6
test_list = [test1, test2, test3, test4, test5, test6]

View File

@ -1,34 +0,0 @@
prefix = 'tests/data/ocr_char_ann_toy_dataset/'
train = dict(
type='OCRSegDataset',
img_prefix=f'{prefix}/imgs',
ann_file=f'{prefix}/instances_train.txt',
loader=dict(
type='AnnFileLoader',
repeat=100,
file_format='txt',
parser=dict(
type='LineJsonParser', keys=['file_name', 'annotations', 'text'])),
pipeline=None,
test_mode=True)
test = dict(
type='OCRDataset',
img_prefix=f'{prefix}/imgs',
ann_file=f'{prefix}/instances_test.txt',
loader=dict(
type='AnnFileLoader',
repeat=1,
file_format='txt',
parser=dict(
type='LineStrParser',
keys=['filename', 'text'],
keys_idx=[0, 1],
separator=' ')),
pipeline=None,
test_mode=True)
train_list = [train]
test_list = [test]

View File

@ -1,54 +1,24 @@
dataset_type = 'OCRDataset'
data_root = 'tests/data/recog_toy_dataset'
train_img_prefix = 'imgs/'
train_anno_file = 'label.json'
root = 'tests/data/ocr_toy_dataset'
img_prefix = f'{root}/imgs'
train_anno_file1 = f'{root}/label.txt'
train1 = dict(
type=dataset_type,
img_prefix=img_prefix,
ann_file=train_anno_file1,
loader=dict(
type='AnnFileLoader',
repeat=100,
file_format='txt',
file_storage_backend='disk',
parser=dict(
type='LineStrParser',
keys=['filename', 'text'],
keys_idx=[0, 1],
separator=' ')),
train_dataset = dict(
type='OCRDataset',
data_root=data_root,
data_prefix=dict(img_path=train_img_prefix),
ann_file=train_anno_file,
pipeline=None,
test_mode=False)
train_anno_file2 = f'{root}/label.lmdb'
train2 = dict(
type=dataset_type,
img_prefix=img_prefix,
ann_file=train_anno_file2,
loader=dict(
type='AnnFileLoader',
repeat=100,
file_format='lmdb',
file_storage_backend='disk',
parser=dict(type='LineJsonParser', keys=['filename', 'text'])),
pipeline=None,
test_mode=False)
test_anno_file1 = f'{root}/label.lmdb'
test = dict(
type=dataset_type,
img_prefix=img_prefix,
ann_file=test_anno_file1,
loader=dict(
type='AnnFileLoader',
repeat=1,
file_format='lmdb',
file_storage_backend='disk',
parser=dict(type='LineJsonParser', keys=['filename', 'text'])),
test_anno_file = f'{data_root}/label.json'
test_dataset = dict(
type='OCRDataset',
data_root=data_root,
data_prefix=dict(img_path=train_img_prefix),
ann_file=train_anno_file,
pipeline=None,
test_mode=True)
train_list = [train1, train2]
train_list = [train_dataset]
test_list = [test]
test_list = [test_dataset]

View File

@ -1,13 +1,21 @@
_base_ = [
'dbnet_r18_fpnc.py',
'../../_base_/det_datasets/icdar2015.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_sgd_1200e.py',
]
# dataset settings
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=20), )
train_pipeline_r18 = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
color_type='color_ignore_orientation'),
dict(
type='LoadOCRAnnotations',
with_polygon=True,
@ -32,7 +40,10 @@ train_pipeline_r18 = [
]
test_pipeline_1333_736 = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
color_type='color_ignore_orientation'),
dict(type='Resize', scale=(1333, 736), keep_ratio=True),
dict(
type='PackTextDetInputs',
@ -40,37 +51,24 @@ test_pipeline_1333_736 = [
'instances'))
]
dataset_type = 'OCRDataset'
data_root = 'data/icdar2015'
train_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_training.json',
data_prefix=dict(img_path='imgs/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=train_pipeline_r18)
test_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_test.json',
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=test_pipeline_1333_736)
train_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=False,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
dataset=dict(
type='ConcatDataset', datasets=train_list,
pipeline=train_pipeline_r18))
val_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
dataset=dict(
type='ConcatDataset',
datasets=test_list,
pipeline=test_pipeline_1333_736))
test_dataloader = val_dataloader
val_evaluator = dict(type='HmeanIOUMetric')

View File

@ -1,15 +1,23 @@
_base_ = [
'dbnet_r50dcnv2_fpnc.py',
'../../_base_/det_datasets/icdar2015.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_sgd_1200e.py',
]
# dataset settings
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=20), )
load_from = 'checkpoints/textdet/dbnet/res50dcnv2_synthtext.pth'
train_pipeline_r50dcnv2 = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
color_type='color_ignore_orientation'),
dict(
type='LoadOCRAnnotations',
with_bbox=True,
@ -34,7 +42,10 @@ train_pipeline_r50dcnv2 = [
]
test_pipeline_4068_1024 = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
color_type='color_ignore_orientation'),
dict(type='Resize', scale=(4068, 1024), keep_ratio=True),
dict(
type='PackTextDetInputs',
@ -42,37 +53,24 @@ test_pipeline_4068_1024 = [
'instances'))
]
dataset_type = 'OCRDataset'
data_root = 'data/icdar2015'
train_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_training.json',
data_prefix=dict(img_path='imgs/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=train_pipeline_r50dcnv2)
test_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_test.json',
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=test_pipeline_4068_1024)
train_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
dataset=dict(
type='ConcatDataset',
datasets=train_list,
pipeline=train_pipeline_r50dcnv2))
val_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
dataset=dict(
type='ConcatDataset',
datasets=test_list,
pipeline=test_pipeline_4068_1024))
test_dataloader = val_dataloader
val_evaluator = dict(type='HmeanIOUMetric')

View File

@ -1,11 +1,21 @@
_base_ = [
'drrg_r50_fpn_unet.py',
'../../_base_/det_datasets/icdar2015.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_sgd_1200e.py',
]
# dataset settings
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=20), )
train_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
color_type='color_ignore_orientation'),
dict(
type='LoadOCRAnnotations',
with_bbox=True,
@ -55,7 +65,10 @@ train_pipeline = [
]
test_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
color_type='color_ignore_orientation'),
dict(type='Resize', scale=(1024, 640), keep_ratio=True),
dict(
type='PackTextDetInputs',
@ -63,37 +76,20 @@ test_pipeline = [
'instances'))
]
dataset_type = 'OCRDataset'
data_root = 'data/ctw1500'
train_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_training.json',
data_prefix=dict(img_path='imgs/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=train_pipeline)
test_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_test.json',
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=test_pipeline)
train_dataloader = dict(
batch_size=4,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
dataset=dict(
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
val_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
dataset=dict(
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = dict(type='HmeanIOUMetric')

View File

@ -1,15 +1,23 @@
_base_ = [
'fcenet_r50_fpn.py',
'../../_base_/det_datasets/icdar2015.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_sgd_1500e.py',
]
# dataset settings
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(
checkpoint=dict(type='CheckpointHook', interval=20),
logger=dict(type='LoggerHook', interval=20))
train_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
color_type='color_ignore_orientation'),
dict(
type='LoadOCRAnnotations',
with_polygon=True,
@ -55,7 +63,10 @@ train_pipeline = [
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
]
test_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
color_type='color_ignore_orientation'),
dict(type='Resize', scale=(2260, 2260), keep_ratio=True),
dict(
type='PackTextDetInputs',
@ -63,37 +74,20 @@ test_pipeline = [
'instances'))
]
dataset_type = 'OCRDataset'
data_root = 'data/icdar2015'
train_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_training.json',
data_prefix=dict(img_path='imgs/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=train_pipeline)
test_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_test.json',
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=test_pipeline)
train_dataloader = dict(
batch_size=8,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
dataset=dict(
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
val_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
dataset=dict(
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = dict(type='HmeanIOUMetric')

View File

@ -1,15 +1,23 @@
_base_ = [
'fcenet_r50_fpn.py',
'../../_base_/det_datasets/ctw1500.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_sgd_1500e.py',
]
# dataset settings
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(
checkpoint=dict(type='CheckpointHook', interval=20),
logger=dict(type='LoggerHook', interval=20))
train_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
color_type='color_ignore_orientation'),
dict(
type='LoadOCRAnnotations',
with_polygon=True,
@ -60,7 +68,10 @@ train_pipeline = [
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
]
test_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
color_type='color_ignore_orientation'),
dict(type='Resize', scale=(1080, 736), keep_ratio=True),
dict(
type='PackTextDetInputs',
@ -68,37 +79,20 @@ test_pipeline = [
'instances'))
]
dataset_type = 'OCRDataset'
data_root = 'data/ctw'
train_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_training.json',
data_prefix=dict(img_path='imgs/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=train_pipeline)
test_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_test.json',
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=test_pipeline)
train_dataloader = dict(
batch_size=8,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
dataset=dict(
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
val_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
dataset=dict(
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = dict(type='HmeanIOUMetric')

View File

@ -1,15 +1,23 @@
_base_ = [
'ocr_mask_rcnn_r50_fpn_ohem_poly.py',
'../../_base_/det_datasets/ctw1500.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_sgd_160e.py',
]
# dataset settings
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(
checkpoint=dict(type='CheckpointHook', interval=20),
logger=dict(type='LoggerHook', interval=20))
train_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
color_type='color_ignore_orientation'),
dict(
type='LoadOCRAnnotations',
with_polygon=True,
@ -37,7 +45,10 @@ train_pipeline = [
'scale_factor', 'flip_direction'))
]
test_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
color_type='color_ignore_orientation'),
dict(type='mmdet.Resize', scale=(1600, 1600), keep_ratio=True),
dict(
type='PackTextDetInputs',
@ -45,36 +56,20 @@ test_pipeline = [
'instances'))
]
dataset_type = 'OCRDataset'
data_root = 'data/ctw'
train_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_training.json',
data_prefix=dict(img_path='imgs/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=train_pipeline)
test_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_test.json',
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=test_pipeline)
train_dataloader = dict(
batch_size=8,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
dataset=dict(
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
val_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
dataset=dict(
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = dict(type='HmeanIOUMetric')

View File

@ -1,15 +1,23 @@
_base_ = [
'ocr_mask_rcnn_r50_fpn_ohem_poly.py',
'../../_base_/det_datasets/icdar2015.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_sgd_160e.py',
]
# dataset settings
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(
checkpoint=dict(type='CheckpointHook', interval=20),
logger=dict(type='LoggerHook', interval=20))
train_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
color_type='color_ignore_orientation'),
dict(
type='LoadOCRAnnotations',
with_polygon=True,
@ -37,7 +45,10 @@ train_pipeline = [
'scale_factor', 'flip_direction'))
]
test_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
color_type='color_ignore_orientation'),
dict(type='mmdet.Resize', scale=(1920, 1920), keep_ratio=True),
dict(
type='PackTextDetInputs',
@ -45,37 +56,20 @@ test_pipeline = [
'instances'))
]
dataset_type = 'OCRDataset'
data_root = 'data/icdar2015'
train_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_test.json',
data_prefix=dict(img_path='imgs/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=train_pipeline)
test_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_test.json',
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=test_pipeline)
train_dataloader = dict(
batch_size=8,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
dataset=dict(
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
val_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
dataset=dict(
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = dict(type='HmeanIOUMetric')

View File

@ -1,15 +1,23 @@
_base_ = [
'ocr_mask_rcnn_r50_fpn_ohem_poly.py',
'../../_base_/det_datasets/icdar2017.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_sgd_160e.py',
]
# dataset settings
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(
checkpoint=dict(type='CheckpointHook', interval=20),
logger=dict(type='LoggerHook', interval=20))
train_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
color_type='color_ignore_orientation'),
dict(
type='LoadOCRAnnotations',
with_polygon=True,
@ -36,7 +44,10 @@ train_pipeline = [
'scale_factor', 'flip_direction'))
]
test_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
color_type='color_ignore_orientation'),
dict(type='mmdet.Resize', scale=(1920, 1920), keep_ratio=True),
dict(
type='PackTextDetInputs',
@ -44,37 +55,22 @@ test_pipeline = [
'instances'))
]
dataset_type = 'OCRDataset'
data_root = 'data/icdar2017'
train_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_training.json',
data_prefix=dict(img_path='imgs/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=train_pipeline)
test_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_test.json',
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=test_pipeline)
train_dataloader = dict(
batch_size=8,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
dataset=dict(
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
val_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
dataset=dict(
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = dict(type='HmeanIOUMetric')

View File

@ -1,11 +1,21 @@
_base_ = [
'panet_r18_fpem_ffm.py',
'../../_base_/default_runtime.py',
'../../_base_/det_datasets/icdar2015.py',
'../../_base_/schedules/schedule_adam_600e.py',
]
# dataset settings
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=20), )
train_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
color_type='color_ignore_orientation'),
dict(
type='LoadOCRAnnotations',
with_polygon=True,
@ -28,7 +38,10 @@ train_pipeline = [
]
test_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
color_type='color_ignore_orientation'),
# TODO Replace with mmcv.RescaleToShort when it's ready
dict(
type='RescaleToShortAspectJitter',
@ -42,37 +55,20 @@ test_pipeline = [
'instances'))
]
dataset_type = 'OCRDataset'
data_root = 'data/det/icdar2015'
train_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instance_training.json',
data_prefix=dict(img_path='imgs/'),
filter_cfg=dict(filter_empty_gt=True),
pipeline=train_pipeline)
test_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instance_test.json',
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=test_pipeline)
train_dataloader = dict(
batch_size=8,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
dataset=dict(
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
val_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
dataset=dict(
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = dict(

View File

@ -1,13 +1,25 @@
_base_ = [
'psenet_r50_fpnf.py',
'../../_base_/det_datasets/icdar2015.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_600e.py',
]
# dataset settings
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(
checkpoint=dict(type='CheckpointHook', interval=20),
logger=dict(type='LoggerHook', interval=20))
model = {{_base_.model_quad}}
train_pipeline_icdar2015 = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
color_type='color_ignore_orientation'),
dict(
type='LoadOCRAnnotations',
with_polygon=True,
@ -29,7 +41,10 @@ train_pipeline_icdar2015 = [
]
test_pipeline_icdar2015 = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
color_type='color_ignore_orientation'),
dict(type='Resize', scale=(2240, 2240), keep_ratio=True),
dict(
type='PackTextDetInputs',
@ -37,37 +52,24 @@ test_pipeline_icdar2015 = [
'instances'))
]
dataset_type = 'OCRDataset'
data_root = 'data/icdar2015'
train_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_training.json',
data_prefix=dict(img_path='imgs/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=train_pipeline_icdar2015)
test_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_test.json',
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=test_pipeline_icdar2015)
train_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=False,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
dataset=dict(
type='ConcatDataset',
datasets=train_list,
pipeline=train_pipeline_icdar2015))
val_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
dataset=dict(
type='ConcatDataset',
datasets=test_list,
pipeline=test_pipeline_icdar2015))
test_dataloader = val_dataloader
val_evaluator = dict(type='HmeanIOUMetric')

View File

@ -1,11 +1,23 @@
_base_ = [
'textsnake_r50_fpn_unet.py',
'../../_base_/det_datasets/ctw1500.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_sgd_1200e.py',
]
# dataset settings
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(
checkpoint=dict(type='CheckpointHook', interval=20),
logger=dict(type='LoggerHook', interval=20))
train_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
color_type='color_ignore_orientation'),
dict(
type='LoadOCRAnnotations',
with_bbox=True,
@ -46,7 +58,10 @@ train_pipeline = [
]
test_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
color_type='color_ignore_orientation'),
dict(type='Resize', scale=(1333, 736), keep_ratio=True),
dict(
type='PackTextDetInputs',
@ -54,37 +69,20 @@ test_pipeline = [
'instances'))
]
dataset_type = 'OCRDataset'
data_root = 'data/ctw1500'
train_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_training.json',
data_prefix=dict(img_path='imgs/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=train_pipeline)
test_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_test.json',
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=test_pipeline)
train_dataloader = dict(
batch_size=4,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
dataset=dict(
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
val_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
dataset=dict(
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = dict(type='HmeanIOUMetric')

View File

@ -1,14 +1,15 @@
_base_ = [
'../../_base_/recog_datasets/ST_MJ_train.py',
'../../_base_/recog_datasets/academic_test.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_20e.py',
]
default_hooks = dict(logger=dict(type='LoggerHook', interval=100))
# dataset settings
dataset_type = 'OCRDataset'
data_root = 'data/recog/'
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(logger=dict(type='LoggerHook', interval=100))
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
@ -80,26 +81,13 @@ test_pipeline = [
'instances'))
]
dataset_mj = dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path='mnt/ramdisk/max/90kDICT32px/'),
ann_file='data/MJ/label.json',
pipeline=train_pipeline)
dataset_st = dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(
img_path='SynthText/synthtext/SynthText_patch_horizontal/'),
ann_file='data/ST/alphanumeric_labels.json',
pipeline=train_pipeline)
train_dataloader = dict(
batch_size=192 * 4,
num_workers=32,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(type='ConcatDataset', datasets=[dataset_mj, dataset_st]))
dataset=dict(
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
val_dataloader = dict(
batch_size=192,
@ -108,12 +96,7 @@ val_dataloader = dict(
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path='testset/testset/IIIT5K/'),
ann_file='label.json',
test_mode=True,
pipeline=test_pipeline))
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = dict(type='WordMetric', mode=['ignore_case_symbol'])

View File

@ -2,15 +2,16 @@
_base_ = [
'crnn.py',
'../../_base_/default_runtime.py',
'../../_base_/recog_datasets/MJ_train.py',
'../../_base_/recog_datasets/academic_test.py',
'../../_base_/schedules/schedule_adadelta_5e.py',
]
default_hooks = dict(logger=dict(type='LoggerHook', interval=50), )
# dataset settings
dataset_type = 'OCRDataset'
data_root = 'data/recog/'
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(logger=dict(type='LoggerHook', interval=50), )
train_pipeline = [
dict(
@ -47,11 +48,7 @@ train_dataloader = dict(
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='train_label.json',
pipeline=train_pipeline))
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
val_dataloader = dict(
batch_size=1,
@ -60,12 +57,7 @@ val_dataloader = dict(
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='test_label.json',
test_mode=True,
pipeline=test_pipeline))
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = [

View File

@ -1,15 +1,16 @@
_base_ = [
'master.py',
'../../_base_/recog_datasets/ST_SA_MJ_train.py',
'../../_base_/recog_datasets/academic_test.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_12e.py',
]
default_hooks = dict(logger=dict(type='LoggerHook', interval=50), )
# dataset settings
dataset_type = 'OCRDataset'
data_root = 'data/recog/'
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(logger=dict(type='LoggerHook', interval=50), )
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
@ -47,11 +48,7 @@ train_dataloader = dict(
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='train_label.json',
pipeline=train_pipeline))
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
val_dataloader = dict(
batch_size=128,
@ -60,12 +57,7 @@ val_dataloader = dict(
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='test_label.json',
test_mode=True,
pipeline=test_pipeline))
type='ConcatDataset', datasets=test_list, pipeline=train_pipeline))
test_dataloader = val_dataloader
val_evaluator = [

View File

@ -1,15 +1,15 @@
_base_ = [
'master.py',
'../../_base_/recog_datasets/toy_data.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_12e.py',
]
default_hooks = dict(logger=dict(type='LoggerHook', interval=50), )
# dataset settings
dataset_type = 'OCRDataset'
data_root = 'test/data/recog_toy_dataset'
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(logger=dict(type='LoggerHook', interval=50), )
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
@ -47,11 +47,7 @@ train_dataloader = dict(
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='label.json',
pipeline=train_pipeline))
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
val_dataloader = dict(
batch_size=2,
@ -60,12 +56,7 @@ val_dataloader = dict(
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='label.json',
test_mode=True,
pipeline=test_pipeline))
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = [

View File

@ -1,5 +1,7 @@
_base_ = [
'nrtr_modality_transform.py', '../../_base_/default_runtime.py',
'nrtr_modality_transform.py', '../../_base_/recog_datasets/ST_MJ_train.py',
'../../_base_/recog_datasets/academic_test.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_6e.py'
]
@ -7,9 +9,10 @@ optimizer = dict(type='Adam', lr=3e-4)
default_hooks = dict(logger=dict(type='LoggerHook', interval=50))
# dataset settings
dataset_type = 'OCRDataset'
data_root = 'data/recog/'
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(logger=dict(type='LoggerHook', interval=100))
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
@ -47,11 +50,7 @@ train_dataloader = dict(
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='train_label.json',
pipeline=train_pipeline))
type='ConcatDataset', datasets=train_list, pipeline=test_pipeline))
val_dataloader = dict(
batch_size=128,
@ -60,12 +59,7 @@ val_dataloader = dict(
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='test_label.json',
test_mode=True,
pipeline=test_pipeline))
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = [

View File

@ -3,12 +3,11 @@ _base_ = [
'../../_base_/schedules/schedule_adam_step_6e.py'
]
default_hooks = dict(logger=dict(type='LoggerHook', interval=50))
# dataset settings
dataset_type = 'OCRDataset'
data_root = 'test/data/recog_toy_dataset'
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(logger=dict(type='LoggerHook', interval=100))
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
@ -46,11 +45,7 @@ train_dataloader = dict(
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='label.json',
pipeline=train_pipeline))
type='ConcatDataset', datasets=train_list, pipeline=test_pipeline))
val_dataloader = dict(
batch_size=128,
@ -59,12 +54,8 @@ val_dataloader = dict(
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='label.json',
test_mode=True,
pipeline=test_pipeline))
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = [

View File

@ -1,10 +1,17 @@
_base_ = [
'../../_base_/recog_datasets/ST_MJ_train.py',
'../../_base_/recog_datasets/academic_test.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_6e.py'
]
optimizer = dict(type='Adam', lr=3e-4)
default_hooks = dict(logger=dict(type='LoggerHook', interval=50))
# dataset settings
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(logger=dict(type='LoggerHook', interval=100))
dictionary = dict(
type='Dictionary',
@ -34,11 +41,6 @@ model = dict(
preprocess_cfg=dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]))
# dataset settings
dataset_type = 'OCRDataset'
data_root = 'data/recog/'
file_client_args = dict(backend='disk')
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='LoadOCRAnnotations', with_text=True),
@ -75,11 +77,7 @@ train_dataloader = dict(
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='train_label.json',
pipeline=train_pipeline))
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
val_dataloader = dict(
batch_size=128,
@ -88,12 +86,7 @@ val_dataloader = dict(
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='test_label.json',
test_mode=True,
pipeline=test_pipeline))
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = [

View File

@ -1,4 +1,6 @@
_base_ = [
'../../_base_/recog_datasets/ST_MJ_train.py',
'../../_base_/recog_datasets/academic_test.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_6e.py'
]
@ -6,6 +8,12 @@ _base_ = [
optimizer = dict(type='Adam', lr=3e-4)
default_hooks = dict(logger=dict(type='LoggerHook', interval=50))
# dataset settings
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(logger=dict(type='LoggerHook', interval=100))
dictionary = dict(
type='Dictionary',
dict_file='dicts/english_digits_symbols.txt',
@ -34,11 +42,6 @@ model = dict(
preprocess_cfg=dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]))
# dataset settings
dataset_type = 'OCRDataset'
data_root = 'data/recog/'
file_client_args = dict(backend='disk')
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='LoadOCRAnnotations', with_text=True),
@ -75,11 +78,7 @@ train_dataloader = dict(
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='train_label.json',
pipeline=train_pipeline))
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
val_dataloader = dict(
batch_size=128,
@ -88,12 +87,8 @@ val_dataloader = dict(
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='test_label.json',
test_mode=True,
pipeline=test_pipeline))
type='ConcatDataset', datasets=test_list, pipeline=train_pipeline))
test_dataloader = val_dataloader
val_evaluator = [

View File

@ -1,12 +1,15 @@
_base_ = [
'robust_scanner.py', '../../_base_/default_runtime.py',
'robust_scanner.py', '../../_base_/recog_datasets/ST_SA_MJ_real_train.py',
'../../_base_/recog_datasets/academic_test.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_5e.py'
]
# dataset settings
dataset_type = 'OCRDataset'
data_root = 'data/recog'
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(logger=dict(type='LoggerHook', interval=100))
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
@ -38,11 +41,7 @@ train_dataloader = dict(
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=''),
ann_file='train_label.json',
pipeline=train_pipeline))
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
val_dataloader = dict(
batch_size=1,
@ -51,12 +50,7 @@ val_dataloader = dict(
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=''),
ann_file='test_label.json',
test_mode=True,
pipeline=test_pipeline))
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = [

View File

@ -1,12 +1,16 @@
_base_ = [
'sar.py',
'../../_base_/recog_datasets/ST_SA_MJ_real_train.py',
'../../_base_/recog_datasets/academic_test.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_5e.py',
]
dataset_type = 'OCRDataset'
data_root = 'data/recog/'
# dataset settings
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(logger=dict(type='LoggerHook', interval=100))
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
@ -44,11 +48,7 @@ train_dataloader = dict(
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='train_label.json',
pipeline=train_pipeline))
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
val_dataloader = dict(
batch_size=1,
@ -57,12 +57,7 @@ val_dataloader = dict(
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='test_label.json',
test_mode=True,
pipeline=test_pipeline))
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = [

View File

@ -1,12 +1,16 @@
_base_ = [
'sar.py',
'../../_base_/recog_datasets/ST_SA_MJ_real_train.py',
'../../_base_/recog_datasets/academic_test.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_5e.py',
]
dataset_type = 'OCRDataset'
data_root = 'data/recog/'
# dataset settings
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(logger=dict(type='LoggerHook', interval=100))
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
@ -38,11 +42,7 @@ train_dataloader = dict(
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='train_label.json',
pipeline=train_pipeline))
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
val_dataloader = dict(
batch_size=1,
@ -51,12 +51,7 @@ val_dataloader = dict(
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='test_label.json',
test_mode=True,
pipeline=test_pipeline))
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = [

View File

@ -1,15 +1,19 @@
_base_ = [
'satrn.py'
'satrn.py',
'../../_base_/recog_datasets/ST_MJ_train.py',
'../../_base_/recog_datasets/academic_test.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_5e.py',
]
# dataset settings
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(logger=dict(type='LoggerHook', interval=50))
# dataset settings
dataset_type = 'OCRDataset'
data_root = 'tests/data/ocr_toy_dataset'
file_client_args = dict(backend='petrel')
# optimizer
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=3e-4))
model = dict(
type='SATRN',
@ -38,9 +42,6 @@ model = dict(
max_seq_len=25,
postprocessor=dict(type='AttentionPostprocessor')))
# optimizer
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=3e-4))
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='LoadOCRAnnotations', with_text=True),
@ -66,11 +67,7 @@ train_dataloader = dict(
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='train_label.json',
pipeline=train_pipeline))
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
val_dataloader = dict(
batch_size=64,
@ -79,12 +76,7 @@ val_dataloader = dict(
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=None),
ann_file='test_label.json',
test_mode=True,
pipeline=test_pipeline))
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = [