[Vis] visualizer refine (#1411)

* visualizer refine

* updata docs
pull/1434/head
liukuikun 2022-10-09 12:45:17 +08:00 committed by GitHub
parent b26907e908
commit dfc17207ba
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 487 additions and 1241 deletions

View File

@ -1,10 +1,11 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .base_visualizer import BaseLocalVisualizer
from .kie_visualizer import KIELocalVisualizer
from .textdet_visualizer import TextDetLocalVisualizer
from .textrecog_visualizer import TextRecogLocalVisualizer
from .textspotting_visualizer import TextSpottingLocalVisualizer
__all__ = [
'KIELocalVisualizer', 'TextDetLocalVisualizer', 'TextRecogLocalVisualizer',
'TextSpottingLocalVisualizer'
'BaseLocalVisualizer', 'KIELocalVisualizer', 'TextDetLocalVisualizer',
'TextRecogLocalVisualizer', 'TextSpottingLocalVisualizer'
]

View File

@ -50,14 +50,13 @@ class BaseLocalVisualizer(Visualizer):
(95, 54, 80), (128, 76, 255), (201, 57, 1), (246, 0, 122),
(191, 162, 208)]
@staticmethod
def _draw_labels(visualizer: Visualizer,
image: np.ndarray,
labels: Union[np.ndarray, torch.Tensor],
bboxes: Union[np.ndarray, torch.Tensor],
colors: Union[str, Sequence[str]] = 'k',
font_size: Union[int, float] = 10,
auto_font_size: bool = False) -> np.ndarray:
def get_labels_image(self,
image: np.ndarray,
labels: Union[np.ndarray, torch.Tensor],
bboxes: Union[np.ndarray, torch.Tensor],
colors: Union[str, Sequence[str]] = 'k',
font_size: Union[int, float] = 10,
auto_font_size: bool = False) -> np.ndarray:
"""Draw labels on image.
Args:
@ -75,7 +74,7 @@ class BaseLocalVisualizer(Visualizer):
auto_font_size (bool): Whether to automatically adjust font size.
Defaults to False.
"""
if colors is not None and isinstance(colors, Sequence):
if colors is not None and isinstance(colors, (list, tuple)):
size = math.ceil(len(labels) / len(colors))
colors = (colors * size)[:len(labels)]
if auto_font_size:
@ -83,68 +82,124 @@ class BaseLocalVisualizer(Visualizer):
font_size, (int, float))
font_size = (bboxes[:, 2:] - bboxes[:, :2]).min(-1) * font_size
font_size = font_size.tolist()
visualizer.set_image(image)
visualizer.draw_texts(
self.set_image(image)
self.draw_texts(
labels, (bboxes[:, :2] + bboxes[:, 2:]) / 2,
vertical_alignments='center',
horizontal_alignments='center',
colors='k',
font_sizes=font_size)
return visualizer.get_image()
return self.get_image()
@staticmethod
def _draw_polygons(visualizer: Visualizer,
image: np.ndarray,
polygons: Sequence[np.ndarray],
colors: Union[str, Sequence[str]] = 'g',
filling: bool = False,
line_width: Union[int, float] = 0.5,
alpha: float = 0.5) -> np.ndarray:
if colors is not None and isinstance(colors, Sequence):
def get_polygons_image(self,
image: np.ndarray,
polygons: Sequence[np.ndarray],
colors: Union[str, Sequence[str]] = 'g',
filling: bool = False,
line_width: Union[int, float] = 0.5,
alpha: float = 0.5) -> np.ndarray:
"""Draw polygons on image.
Args:
image (np.ndarray): The origin image to draw. The format
should be RGB.
polygons (Sequence[np.ndarray]): The polygons to draw. The shape
should be (N, 2).
colors (Union[str, Sequence[str]]): The colors of polygons.
``colors`` can have the same length with polygons or just
single value. If ``colors`` is single value, all the polygons
will have the same colors. Refer to `matplotlib.colors` for
full list of formats that are accepted. Defaults to 'g'.
filling (bool): Whether to fill the polygons. Defaults to False.
line_width (Union[int, float]): The line width of polygons.
Defaults to 0.5.
alpha (float): The alpha of polygons. Defaults to 0.5.
Returns:
np.ndarray: The image with polygons drawn.
"""
if colors is not None and isinstance(colors, (list, tuple)):
size = math.ceil(len(polygons) / len(colors))
colors = (colors * size)[:len(polygons)]
visualizer.set_image(image)
self.set_image(image)
if filling:
visualizer.draw_polygons(
self.draw_polygons(
polygons,
face_colors=colors,
edge_colors=colors,
line_widths=line_width,
alpha=alpha)
else:
visualizer.draw_polygons(
self.draw_polygons(
polygons,
edge_colors=colors,
line_widths=line_width,
alpha=alpha)
return visualizer.get_image()
return self.get_image()
@staticmethod
def _draw_bboxes(visualizer: Visualizer,
image: np.ndarray,
bboxes: Union[np.ndarray, torch.Tensor],
colors: Union[str, Sequence[str]] = 'g',
filling: bool = False,
line_width: Union[int, float] = 0.5,
alpha: float = 0.5) -> np.ndarray:
if colors is not None and isinstance(colors, Sequence):
def get_bboxes_image(self: Visualizer,
image: np.ndarray,
bboxes: Union[np.ndarray, torch.Tensor],
colors: Union[str, Sequence[str]] = 'g',
filling: bool = False,
line_width: Union[int, float] = 0.5,
alpha: float = 0.5) -> np.ndarray:
"""Draw bboxes on image.
Args:
image (np.ndarray): The origin image to draw. The format
should be RGB.
bboxes (Union[np.ndarray, torch.Tensor]): The bboxes to draw.
colors (Union[str, Sequence[str]]): The colors of bboxes.
``colors`` can have the same length with bboxes or just single
value. If ``colors`` is single value, all the bboxes will have
the same colors. Refer to `matplotlib.colors` for full list of
formats that are accepted. Defaults to 'g'.
filling (bool): Whether to fill the bboxes. Defaults to False.
line_width (Union[int, float]): The line width of bboxes.
Defaults to 0.5.
alpha (float): The alpha of bboxes. Defaults to 0.5.
Returns:
np.ndarray: The image with bboxes drawn.
"""
if colors is not None and isinstance(colors, (list, tuple)):
size = math.ceil(len(bboxes) / len(colors))
colors = (colors * size)[:len(bboxes)]
visualizer.set_image(image)
self.set_image(image)
if filling:
visualizer.draw_bboxes(
self.draw_bboxes(
bboxes,
face_colors=colors,
edge_colors=colors,
line_widths=line_width,
alpha=alpha)
else:
visualizer.draw_bboxes(
self.draw_bboxes(
bboxes,
edge_colors=colors,
line_widths=line_width,
alpha=alpha)
return visualizer.get_image()
return self.get_image()
def _draw_instances(self) -> np.ndarray:
raise NotImplementedError
def _cat_image(self, imgs: Sequence[np.ndarray], axis: int) -> np.ndarray:
"""Concatenate images.
Args:
imgs (Sequence[np.ndarray]): The images to concatenate.
axis (int): The axis to concatenate.
Returns:
np.ndarray: The concatenated image.
"""
cat_image = list()
for img in imgs:
if img is not None:
cat_image.append(img)
if len(cat_image):
return np.concatenate(cat_image, axis=axis)
else:
return None

View File

@ -1,5 +1,4 @@
# Copyright (c) OpenMMLab. All rights reserved.
import math
import warnings
from typing import Dict, List, Optional, Sequence, Union
@ -15,31 +14,11 @@ from mmengine.visualization.utils import (check_type, check_type_and_length,
from mmocr.registry import VISUALIZERS
from mmocr.structures import KIEDataSample
PALETTE = [(220, 20, 60), (119, 11, 32), (0, 0, 142), (0, 0, 230),
(106, 0, 228), (0, 60, 100), (0, 80, 100), (0, 0, 70), (0, 0, 192),
(250, 170, 30), (100, 170, 30), (220, 220, 0), (175, 116, 175),
(250, 0, 30), (165, 42, 42), (255, 77, 255), (0, 226, 252),
(182, 182, 255), (0, 82, 0), (120, 166, 157), (110, 76, 0),
(174, 57, 255), (199, 100, 0), (72, 0, 118), (255, 179, 240),
(0, 125, 92), (209, 0, 151), (188, 208, 182), (0, 220, 176),
(255, 99, 164), (92, 0, 73), (133, 129, 255), (78, 180, 255),
(0, 228, 0), (174, 255, 243), (45, 89, 255), (134, 134, 103),
(145, 148, 174), (255, 208, 186), (197, 226, 255), (171, 134, 1),
(109, 63, 54), (207, 138, 255), (151, 0, 95), (9, 80, 61),
(84, 105, 51), (74, 65, 105), (166, 196, 102), (208, 195, 210),
(255, 109, 65), (0, 143, 149), (179, 0, 194), (209, 99, 106),
(5, 121, 0), (227, 255, 205), (147, 186, 208), (153, 69, 1),
(3, 95, 161), (163, 255, 0), (119, 0, 170), (0, 182, 199),
(0, 165, 120), (183, 130, 88), (95, 32, 0), (130, 114, 135),
(110, 129, 133), (166, 74, 118), (219, 142, 185), (79, 210, 114),
(178, 90, 62), (65, 70, 15), (127, 167, 115), (59, 105, 106),
(142, 108, 45), (196, 172, 0), (95, 54, 80), (128, 76, 255),
(201, 57, 1), (246, 0, 122), (191, 162, 208)]
from .base_visualizer import BaseLocalVisualizer
@VISUALIZERS.register_module()
class KIELocalVisualizer(Visualizer):
class KIELocalVisualizer(BaseLocalVisualizer):
"""The MMOCR Text Detection Local Visualizer.
Args:
@ -65,102 +44,6 @@ class KIELocalVisualizer(Visualizer):
super().__init__(name=name, **kwargs)
self.is_openset = is_openset
@staticmethod
def _draw_labels(visualizer: Visualizer,
image: np.ndarray,
labels: Union[np.ndarray, torch.Tensor],
bboxes: Union[np.ndarray, torch.Tensor],
colors: Union[str, Sequence[str]] = 'k',
font_size: Union[int, float] = 10,
auto_font_size: bool = False) -> np.ndarray:
"""Draw labels on image.
Args:
image (np.ndarray): The origin image to draw. The format
should be RGB.
labels (Union[np.ndarray, torch.Tensor]): The labels to draw.
bboxes (Union[np.ndarray, torch.Tensor]): The bboxes to draw.
colors (Union[str, Sequence[str]]): The colors of labels.
``colors`` can have the same length with labels or just single
value. If ``colors`` is single value, all the labels will have
the same colors. Refer to `matplotlib.colors` for full list of
formats that are accepted. Defaults to 'k'.
font_size (Union[int, float]): The font size of labels. Defaults
to 10.
auto_font_size (bool): Whether to automatically adjust font size.
Defaults to False.
"""
if colors is not None and isinstance(colors, Sequence):
size = math.ceil(len(labels) / len(colors))
colors = (colors * size)[:len(labels)]
if auto_font_size:
assert font_size is not None and isinstance(
font_size, (int, float))
font_size = (bboxes[:, 2:] - bboxes[:, :2]).min(-1) * font_size
font_size = font_size.tolist()
visualizer.set_image(image)
visualizer.draw_texts(
labels, (bboxes[:, :2] + bboxes[:, 2:]) / 2,
vertical_alignments='center',
horizontal_alignments='center',
colors='k',
font_sizes=font_size)
return visualizer.get_image()
@staticmethod
def _draw_polygons(visualizer: Visualizer,
image: np.ndarray,
polygons: Sequence[np.ndarray],
colors: Union[str, Sequence[str]] = 'g',
filling: bool = False,
line_width: Union[int, float] = 0.5,
alpha: float = 0.5) -> np.ndarray:
if colors is not None and isinstance(colors, Sequence):
size = math.ceil(len(polygons) / len(colors))
colors = (colors * size)[:len(polygons)]
visualizer.set_image(image)
if filling:
visualizer.draw_polygons(
polygons,
face_colors=colors,
edge_colors=colors,
line_widths=line_width,
alpha=alpha)
else:
visualizer.draw_polygons(
polygons,
edge_colors=colors,
line_widths=line_width,
alpha=alpha)
return visualizer.get_image()
@staticmethod
def _draw_bboxes(visualizer: Visualizer,
image: np.ndarray,
bboxes: Union[np.ndarray, torch.Tensor],
colors: Union[str, Sequence[str]] = 'g',
filling: bool = False,
line_width: Union[int, float] = 0.5,
alpha: float = 0.5) -> np.ndarray:
if colors is not None and isinstance(colors, Sequence):
size = math.ceil(len(bboxes) / len(colors))
colors = (colors * size)[:len(bboxes)]
visualizer.set_image(image)
if filling:
visualizer.draw_bboxes(
bboxes,
face_colors=colors,
edge_colors=colors,
line_widths=line_width,
alpha=alpha)
else:
visualizer.draw_bboxes(
bboxes,
edge_colors=colors,
line_widths=line_width,
alpha=alpha)
return visualizer.get_image()
def _draw_edge_label(self,
image: np.ndarray,
edge_labels: Union[np.ndarray, torch.Tensor],
@ -182,6 +65,9 @@ class KIELocalVisualizer(Visualizer):
arrow_colors (str, optional): The colors of arrows. Refer to
`matplotlib.colors` for full list of formats that are accepted.
Defaults to 'g'.
Returns:
np.ndarray: The image with edge labels drawn.
"""
pairs = np.where(edge_labels > 0)
key_bboxes = bboxes[pairs[0]]
@ -253,49 +139,45 @@ class KIELocalVisualizer(Visualizer):
class_names (dict): The class names for bbox labels.
is_openset (bool): Whether the dataset is openset. Defaults to
False.
arrow_colors (str, optional): The colors of arrows. Refer to
`matplotlib.colors` for full list of formats that are accepted.
Defaults to 'g'.
Returns:
np.ndarray: The image with instances drawn.
"""
img_shape = image.shape[:2]
empty_shape = (img_shape[0], img_shape[1], 3)
if polygons:
polygons = [polygon.reshape(-1, 2) for polygon in polygons]
if polygons:
image = self._draw_polygons(
self, image, polygons, filling=True, colors=PALETTE)
else:
image = self._draw_bboxes(
self, image, bboxes, filling=True, colors=PALETTE)
text_image = np.full(empty_shape, 255, dtype=np.uint8)
text_image = self._draw_labels(self, text_image, texts, bboxes)
if polygons:
text_image = self._draw_polygons(
self, text_image, polygons, colors=PALETTE)
else:
text_image = self._draw_bboxes(
self, text_image, bboxes, colors=PALETTE)
text_image = self.get_labels_image(text_image, texts, bboxes)
classes_image = np.full(empty_shape, 255, dtype=np.uint8)
bbox_classes = [class_names[int(i)]['name'] for i in bbox_labels]
classes_image = self._draw_labels(self, classes_image, bbox_classes,
bboxes)
classes_image = self.get_labels_image(classes_image, bbox_classes,
bboxes)
if polygons:
classes_image = self._draw_polygons(
self, classes_image, polygons, colors=PALETTE)
polygons = [polygon.reshape(-1, 2) for polygon in polygons]
image = self.get_polygons_image(
image, polygons, filling=True, colors=self.PALETTE)
text_image = self.get_polygons_image(
text_image, polygons, colors=self.PALETTE)
classes_image = self.get_polygons_image(
classes_image, polygons, colors=self.PALETTE)
else:
classes_image = self._draw_bboxes(
self, classes_image, bboxes, colors=PALETTE)
edge_image = None
image = self.get_bboxes_image(
image, bboxes, filling=True, colors=self.PALETTE)
text_image = self.get_bboxes_image(
text_image, bboxes, colors=self.PALETTE)
classes_image = self.get_bboxes_image(
classes_image, bboxes, colors=self.PALETTE)
cat_image = [image, text_image, classes_image]
if is_openset:
edge_image = np.full(empty_shape, 255, dtype=np.uint8)
edge_image = self._draw_edge_label(edge_image, edge_labels, bboxes,
texts, arrow_colors)
cat_image = []
for i in [image, text_image, classes_image, edge_image]:
if i is not None:
cat_image.append(i)
return np.concatenate(cat_image, axis=1)
cat_image.append(edge_image)
return self._cat_image(cat_image, axis=1)
def add_datasample(self,
name: str,
@ -336,8 +218,7 @@ class KIELocalVisualizer(Visualizer):
out_file (str): Path to output file. Defaults to None.
step (int): Global step value to record. Defaults to 0.
"""
gt_img_data = None
pred_img_data = None
cat_images = list()
if draw_gt:
gt_bboxes = data_sample.gt_instances.bboxes
@ -350,6 +231,7 @@ class KIELocalVisualizer(Visualizer):
gt_texts,
self.dataset_meta['category'],
self.is_openset, 'g')
cat_images.append(gt_img_data)
if draw_pred:
gt_bboxes = data_sample.gt_instances.bboxes
pred_labels = data_sample.pred_instances.labels
@ -362,22 +244,19 @@ class KIELocalVisualizer(Visualizer):
gt_texts,
self.dataset_meta['category'],
self.is_openset, 'r')
if gt_img_data is not None and pred_img_data is not None:
drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=0)
elif gt_img_data is not None:
drawn_img = gt_img_data
elif pred_img_data is not None:
drawn_img = pred_img_data
else:
drawn_img = image
cat_images.append(pred_img_data)
cat_images = self._cat_image(cat_images, axis=0)
if cat_images is None:
cat_images = image
if show:
self.show(drawn_img, win_name=name, wait_time=wait_time)
self.show(cat_images, win_name=name, wait_time=wait_time)
else:
self.add_image(name, drawn_img, step)
self.add_image(name, cat_images, step)
if out_file is not None:
mmcv.imwrite(drawn_img[..., ::-1], out_file)
mmcv.imwrite(cat_images[..., ::-1], out_file)
def draw_arrows(self,
x_data: Union[np.ndarray, torch.Tensor],

View File

@ -1,16 +1,17 @@
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Tuple, Union
from typing import Dict, List, Optional, Sequence, Tuple, Union
import mmcv
import numpy as np
from mmengine.visualization import Visualizer
import torch
from mmocr.registry import VISUALIZERS
from mmocr.structures import TextDetDataSample
from .base_visualizer import BaseLocalVisualizer
@VISUALIZERS.register_module()
class TextDetLocalVisualizer(Visualizer):
class TextDetLocalVisualizer(BaseLocalVisualizer):
"""The MMOCR Text Detection Local Visualizer.
Args:
@ -62,6 +63,42 @@ class TextDetLocalVisualizer(Visualizer):
self.line_width = line_width
self.alpha = alpha
def _draw_instances(
self,
image: np.ndarray,
bboxes: Union[np.ndarray, torch.Tensor],
polygons: Sequence[np.ndarray],
color: Union[str, Tuple, List[str], List[Tuple]] = 'g',
) -> np.ndarray:
"""Draw bboxes and polygons on image.
Args:
image (np.ndarray): The origin image to draw.
bboxes (Union[np.ndarray, torch.Tensor]): The bboxes to draw.
polygons (Sequence[np.ndarray]): The polygons to draw.
color (Union[str, tuple, list[str], list[tuple]]): The
colors of polygons and bboxes. ``colors`` can have the same
length with lines or just single value. If ``colors`` is
single value, all the lines will have the same colors. Refer
to `matplotlib.colors` for full list of formats that are
accepted. Defaults to 'g'.
Returns:
np.ndarray: The image with bboxes and polygons drawn.
"""
if polygons is not None and self.with_poly:
polygons = [polygon.reshape(-1, 2) for polygon in polygons]
image = self.get_polygons_image(
image, polygons, filling=True, colors=color, alpha=self.alpha)
if bboxes is not None and self.with_bbox:
image = self.get_bboxes_image(
image,
bboxes,
colors=color,
line_width=self.line_width,
alpha=self.alpha)
return image
def add_datasample(self,
name: str,
image: np.ndarray,
@ -101,79 +138,32 @@ class TextDetLocalVisualizer(Visualizer):
and masks. Defaults to 0.3.
step (int): Global step value to record. Defaults to 0.
"""
gt_img_data = None
pred_img_data = None
if (draw_gt and data_sample is not None
and 'gt_instances' in data_sample):
gt_instances = data_sample.gt_instances
self.set_image(image)
if self.with_poly and 'polygons' in gt_instances:
gt_polygons = gt_instances.polygons
gt_polygons = [
gt_polygon.reshape(-1, 2) for gt_polygon in gt_polygons
]
self.draw_polygons(
gt_polygons,
alpha=self.alpha,
edge_colors=self.gt_color,
line_widths=self.line_width)
if self.with_bbox and 'bboxes' in gt_instances:
gt_bboxes = gt_instances.bboxes
self.draw_bboxes(
gt_bboxes,
alpha=self.alpha,
edge_colors=self.gt_color,
line_widths=self.line_width)
gt_img_data = self.get_image()
if draw_pred and data_sample is not None \
and 'pred_instances' in data_sample:
pred_instances = data_sample.pred_instances
pred_instances = pred_instances[
pred_instances.scores > pred_score_thr].cpu()
self.set_image(image)
if self.with_poly and 'polygons' in pred_instances:
pred_polygons = pred_instances.polygons
pred_polygons = [
pred_polygon.reshape(-1, 2)
for pred_polygon in pred_polygons
]
self.draw_polygons(
pred_polygons,
alpha=self.alpha,
edge_colors=self.pred_color,
line_widths=self.line_width)
if self.with_bbox and 'bboxes' in pred_instances:
pred_bboxes = pred_instances.bboxes
self.draw_bboxes(
pred_bboxes,
alpha=self.alpha,
edge_colors=self.pred_color,
line_widths=self.line_width)
pred_img_data = self.get_image()
if gt_img_data is not None and pred_img_data is not None:
drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1)
elif gt_img_data is not None:
drawn_img = gt_img_data
elif pred_img_data is not None:
drawn_img = pred_img_data
else:
drawn_img = image
cat_images = []
if data_sample is not None:
if draw_gt and 'gt_instances' in data_sample:
gt_instances = data_sample.gt_instances
gt_polygons = gt_instances.get('polygons', None)
gt_bboxes = gt_instances.get('bboxes', None)
gt_img_data = self._draw_instances(image.copy(), gt_bboxes,
gt_polygons, self.gt_color)
cat_images.append(gt_img_data)
if draw_pred and 'pred_instances' in data_sample:
pred_instances = data_sample.pred_instances
pred_instances = pred_instances[
pred_instances.scores > pred_score_thr].cpu()
pred_polygons = pred_instances.get('polygons', None)
pred_bboxes = pred_instances.get('bboxes', None)
pred_img_data = self._draw_instances(image.copy(), pred_bboxes,
pred_polygons,
self.pred_color)
cat_images.append(pred_img_data)
cat_images = self._cat_image(cat_images, axis=1)
if cat_images is None:
cat_images = image
if show:
self.show(drawn_img, win_name=name, wait_time=wait_time)
self.show(cat_images, win_name=name, wait_time=wait_time)
else:
self.add_image(name, drawn_img, step)
self.add_image(name, cat_images, step)
if out_file is not None:
mmcv.imwrite(drawn_img[..., ::-1], out_file)
mmcv.imwrite(cat_images[..., ::-1], out_file)

View File

@ -4,14 +4,14 @@ from typing import Dict, Optional, Tuple, Union
import cv2
import mmcv
import numpy as np
from mmengine.visualization import Visualizer
from mmocr.registry import VISUALIZERS
from mmocr.structures import TextRecogDataSample
from .base_visualizer import BaseLocalVisualizer
@VISUALIZERS.register_module()
class TextRecogLocalVisualizer(Visualizer):
class TextRecogLocalVisualizer(BaseLocalVisualizer):
"""MMOCR Text Detection Local Visualizer.
Args:
@ -46,6 +46,30 @@ class TextRecogLocalVisualizer(Visualizer):
self.gt_color = gt_color
self.pred_color = pred_color
def _draw_instances(self, image: np.ndarray, text: str) -> np.ndarray:
"""Draw text on image.
Args:
image (np.ndarray): The image to draw.
text (str): The text to draw.
Returns:
np.ndarray: The image with text drawn.
"""
height, width = image.shape[:2]
empty_img = np.full_like(image, 255)
self.set_image(empty_img)
font_size = 0.5 * width / (len(text) + 1)
self.draw_texts(
text,
np.array([width / 2, height / 2]),
colors=self.gt_color,
font_sizes=font_size,
vertical_alignments='center',
horizontal_alignments='center')
text_image = self.get_image()
return text_image
def add_datasample(self,
name: str,
image: np.ndarray,
@ -85,59 +109,28 @@ class TextRecogLocalVisualizer(Visualizer):
pred_score_thr (float): Threshold of prediction score. It's not
used in this function. Defaults to None.
"""
gt_img_data = None
pred_img_data = None
height, width = image.shape[:2]
resize_height = 64
resize_width = int(1.0 * width / height * resize_height)
image = cv2.resize(image, (resize_width, resize_height))
if image.ndim == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
cat_images = [image]
if draw_gt and data_sample is not None and 'gt_text' in data_sample:
gt_text = data_sample.gt_text.item
empty_img = np.full_like(image, 255)
self.set_image(empty_img)
font_size = 0.5 * resize_width / (len(gt_text) + 1)
self.draw_texts(
gt_text,
np.array([resize_width / 2, resize_height / 2]),
colors=self.gt_color,
font_sizes=font_size,
vertical_alignments='center',
horizontal_alignments='center')
gt_text_image = self.get_image()
gt_img_data = np.concatenate((image, gt_text_image), axis=0)
cat_images.append(self._draw_instances(image, gt_text))
if (draw_pred and data_sample is not None
and 'pred_text' in data_sample):
pred_text = data_sample.pred_text.item
empty_img = np.full_like(image, 255)
self.set_image(empty_img)
font_size = 0.5 * resize_width / (len(pred_text) + 1)
self.draw_texts(
pred_text,
np.array([resize_width / 2, resize_height / 2]),
colors=self.pred_color,
font_sizes=font_size,
vertical_alignments='center',
horizontal_alignments='center')
pred_text_image = self.get_image()
pred_img_data = np.concatenate((image, pred_text_image), axis=0)
if gt_img_data is not None and pred_img_data is not None:
drawn_img = np.concatenate((gt_img_data, pred_text_image), axis=0)
elif gt_img_data is not None:
drawn_img = gt_img_data
elif pred_img_data is not None:
drawn_img = pred_img_data
else:
drawn_img = image
cat_images.append(self._draw_instances(image, pred_text))
cat_images = self._cat_image(cat_images, axis=0)
if show:
self.show(drawn_img, win_name=name, wait_time=wait_time)
self.show(cat_images, win_name=name, wait_time=wait_time)
else:
self.add_image(name, drawn_img, step)
self.add_image(name, cat_images, step)
if out_file is not None:
mmcv.imwrite(drawn_img[..., ::-1], out_file)
mmcv.imwrite(cat_images[..., ::-1], out_file)

View File

@ -37,27 +37,26 @@ class TextSpottingLocalVisualizer(BaseLocalVisualizer):
should be the same as the number of bboxes.
class_names (dict): The class names for bbox labels.
is_openset (bool): Whether the dataset is openset. Default: False.
Returns:
np.ndarray: The image with instances drawn.
"""
img_shape = image.shape[:2]
empty_shape = (img_shape[0], img_shape[1], 3)
text_image = np.full(empty_shape, 255, dtype=np.uint8)
text_image = self.get_labels_image(
text_image, labels=texts, bboxes=bboxes)
if polygons:
polygons = [polygon.reshape(-1, 2) for polygon in polygons]
if polygons:
image = self._draw_polygons(
self, image, polygons, filling=True, colors=self.PALETTE)
image = self.get_polygons_image(
image, polygons, filling=True, colors=self.PALETTE)
text_image = self.get_polygons_image(
text_image, polygons, colors=self.PALETTE)
else:
image = self._draw_bboxes(
self, image, bboxes, filling=True, colors=self.PALETTE)
text_image = np.full(empty_shape, 255, dtype=np.uint8)
text_image = self._draw_labels(self, text_image, texts, bboxes)
if polygons:
text_image = self._draw_polygons(
self, text_image, polygons, colors=self.PALETTE)
else:
text_image = self._draw_bboxes(
self, text_image, bboxes, colors=self.PALETTE)
image = self.get_bboxes_image(
image, bboxes, filling=True, colors=self.PALETTE)
text_image = self.get_bboxes_image(
text_image, bboxes, colors=self.PALETTE)
return np.concatenate([image, text_image], axis=1)
def add_datasample(self,
@ -68,43 +67,69 @@ class TextSpottingLocalVisualizer(BaseLocalVisualizer):
draw_pred: bool = True,
show: bool = False,
wait_time: int = 0,
pred_score_thr: float = None,
pred_score_thr: float = 0.5,
out_file: Optional[str] = None,
step: int = 0) -> None:
gt_img_data = None
pred_img_data = None
"""Draw datasample and save to all backends.
- If GT and prediction are plotted at the same time, they are
displayed in a stitched image where the left image is the
ground truth and the right image is the prediction.
- If ``show`` is True, all storage backends are ignored, and
the images will be displayed in a local window.
- If ``out_file`` is specified, the drawn image will be
saved to ``out_file``. This is usually used when the display
is not available.
Args:
name (str): The image identifier.
image (np.ndarray): The image to draw.
data_sample (:obj:`TextSpottingDataSample`, optional):
TextDetDataSample which contains gt and prediction. Defaults
to None.
draw_gt (bool): Whether to draw GT TextDetDataSample.
Defaults to True.
draw_pred (bool): Whether to draw Predicted TextDetDataSample.
Defaults to True.
show (bool): Whether to display the drawn image. Default to False.
wait_time (float): The interval of show (s). Defaults to 0.
out_file (str): Path to output file. Defaults to None.
pred_score_thr (float): The threshold to visualize the bboxes
and masks. Defaults to 0.3.
step (int): Global step value to record. Defaults to 0.
"""
cat_images = []
if draw_gt:
gt_bboxes = data_sample.gt_instances.bboxes
gt_bboxes = data_sample.gt_instances.get('bboxes', None)
gt_texts = data_sample.gt_instances.texts
gt_polygons = data_sample.gt_instances.polygons
gt_polygons = data_sample.gt_instances.get('polygons', None)
gt_img_data = self._draw_instances(image, gt_bboxes, gt_polygons,
gt_texts)
cat_images.append(gt_img_data)
if draw_pred:
pred_instances = data_sample.pred_instances
pred_instances = pred_instances[
pred_instances.scores > pred_score_thr].cpu().numpy()
pred_bboxes = pred_instances.get('bboxes', None)
pred_texts = pred_instances.texts
pred_polygons = pred_instances.polygons
pred_polygons = pred_instances.get('polygons', None)
if pred_bboxes is None:
pred_bboxes = [poly2bbox(poly) for poly in pred_polygons]
pred_bboxes = np.array(pred_bboxes)
pred_img_data = self._draw_instances(image, pred_bboxes,
pred_polygons, pred_texts)
if gt_img_data is not None and pred_img_data is not None:
drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=0)
elif gt_img_data is not None:
drawn_img = gt_img_data
elif pred_img_data is not None:
drawn_img = pred_img_data
else:
drawn_img = image
cat_images.append(pred_img_data)
cat_images = self._cat_image(cat_images, axis=0)
if cat_images is None:
cat_images = image
if show:
self.show(drawn_img, win_name=name, wait_time=wait_time)
self.show(cat_images, win_name=name, wait_time=wait_time)
else:
self.add_image(name, drawn_img, step)
self.add_image(name, cat_images, step)
if out_file is not None:
mmcv.imwrite(drawn_img[..., ::-1], out_file)
mmcv.imwrite(cat_images[..., ::-1], out_file)

View File

@ -1,890 +0,0 @@
# Copyright (c) OpenMMLab. All rights reserved.
import math
import os
import shutil
import urllib
import warnings
import cv2
import mmcv
import mmengine
import numpy as np
import torch
from matplotlib import pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import mmocr.utils as utils
# TODO remove after KieVisualizer and TextSpotterVisualizer
def overlay_mask_img(img, mask):
"""Draw mask boundaries on image for visualization.
Args:
img (ndarray): The input image.
mask (ndarray): The instance mask.
Returns:
img (ndarray): The output image with instance boundaries on it.
"""
assert isinstance(img, np.ndarray)
assert isinstance(mask, np.ndarray)
contours, _ = cv2.findContours(
mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img, contours, -1, (0, 255, 0), 1)
return img
def show_feature(features, names, to_uint8, out_file=None):
"""Visualize a list of feature maps.
Args:
features (list(ndarray)): The feature map list.
names (list(str)): The visualized title list.
to_uint8 (list(1|0)): The list indicating whether to convent
feature maps to uint8.
out_file (str): The output file name. If set to None,
the output image will be shown without saving.
"""
assert utils.is_type_list(features, np.ndarray)
assert utils.is_type_list(names, str)
assert utils.is_type_list(to_uint8, int)
assert utils.is_none_or_type(out_file, str)
assert utils.equal_len(features, names, to_uint8)
num = len(features)
row = col = math.ceil(math.sqrt(num))
for i, (f, n) in enumerate(zip(features, names)):
plt.subplot(row, col, i + 1)
plt.title(n)
if to_uint8[i]:
f = f.astype(np.uint8)
plt.imshow(f)
if out_file is None:
plt.show()
else:
plt.savefig(out_file)
def show_img_boundary(img, boundary):
"""Show image and instance boundaires.
Args:
img (ndarray): The input image.
boundary (list[float or int]): The input boundary.
"""
assert isinstance(img, np.ndarray)
assert utils.is_type_list(boundary, (int, float))
cv2.polylines(
img, [np.array(boundary).astype(np.int32).reshape(-1, 1, 2)],
True,
color=(0, 255, 0),
thickness=1)
plt.imshow(img)
plt.show()
def show_pred_gt(preds,
gts,
show=False,
win_name='',
wait_time=0,
out_file=None):
"""Show detection and ground truth for one image.
Args:
preds (list[list[float]]): The detection boundary list.
gts (list[list[float]]): The ground truth boundary list.
show (bool): Whether to show the image.
win_name (str): The window name.
wait_time (int): The value of waitKey param.
out_file (str): The filename of the output.
"""
assert utils.is_2dlist(preds)
assert utils.is_2dlist(gts)
assert isinstance(show, bool)
assert isinstance(win_name, str)
assert isinstance(wait_time, int)
assert utils.is_none_or_type(out_file, str)
p_xy = [p for boundary in preds for p in boundary]
gt_xy = [g for gt in gts for g in gt]
max_xy = np.max(np.array(p_xy + gt_xy).reshape(-1, 2), axis=0)
width = int(max_xy[0]) + 100
height = int(max_xy[1]) + 100
img = np.ones((height, width, 3), np.int8) * 255
pred_color = mmcv.color_val('red')
gt_color = mmcv.color_val('blue')
thickness = 1
for boundary in preds:
cv2.polylines(
img, [np.array(boundary).astype(np.int32).reshape(-1, 1, 2)],
True,
color=pred_color,
thickness=thickness)
for gt in gts:
cv2.polylines(
img, [np.array(gt).astype(np.int32).reshape(-1, 1, 2)],
True,
color=gt_color,
thickness=thickness)
if show:
mmcv.imshow(img, win_name, wait_time)
if out_file is not None:
mmcv.imwrite(img, out_file)
return img
def imshow_pred_boundary(img,
boundaries_with_scores,
labels,
score_thr=0,
boundary_color='blue',
text_color='blue',
thickness=1,
font_scale=0.5,
show=True,
win_name='',
wait_time=0,
out_file=None,
show_score=False):
"""Draw boundaries and class labels (with scores) on an image.
Args:
img (str or ndarray): The image to be displayed.
boundaries_with_scores (list[list[float]]): Boundaries with scores.
labels (list[int]): Labels of boundaries.
score_thr (float): Minimum score of boundaries to be shown.
boundary_color (str or tuple or :obj:`Color`): Color of boundaries.
text_color (str or tuple or :obj:`Color`): Color of texts.
thickness (int): Thickness of lines.
font_scale (float): Font scales of texts.
show (bool): Whether to show the image.
win_name (str): The window name.
wait_time (int): Value of waitKey param.
out_file (str or None): The filename of the output.
show_score (bool): Whether to show text instance score.
"""
assert isinstance(img, (str, np.ndarray))
assert utils.is_2dlist(boundaries_with_scores)
assert utils.is_type_list(labels, int)
assert utils.equal_len(boundaries_with_scores, labels)
if len(boundaries_with_scores) == 0:
warnings.warn('0 text found in ' + out_file)
return None
utils.valid_boundary(boundaries_with_scores[0])
img = mmcv.imread(img)
scores = np.array([b[-1] for b in boundaries_with_scores])
inds = scores > score_thr
boundaries = [boundaries_with_scores[i][:-1] for i in np.where(inds)[0]]
scores = [scores[i] for i in np.where(inds)[0]]
labels = [labels[i] for i in np.where(inds)[0]]
boundary_color = mmcv.color_val(boundary_color)
text_color = mmcv.color_val(text_color)
font_scale = 0.5
for boundary, score in zip(boundaries, scores):
boundary_int = np.array(boundary).astype(np.int32)
cv2.polylines(
img, [boundary_int.reshape(-1, 1, 2)],
True,
color=boundary_color,
thickness=thickness)
if show_score:
label_text = f'{score:.02f}'
cv2.putText(img, label_text,
(boundary_int[0], boundary_int[1] - 2),
cv2.FONT_HERSHEY_COMPLEX, font_scale, text_color)
if show:
mmcv.imshow(img, win_name, wait_time)
if out_file is not None:
mmcv.imwrite(img, out_file)
return img
def imshow_text_char_boundary(img,
text_quads,
boundaries,
char_quads,
chars,
show=False,
thickness=1,
font_scale=0.5,
win_name='',
wait_time=-1,
out_file=None):
"""Draw text boxes and char boxes on img.
Args:
img (str or ndarray): The img to be displayed.
text_quads (list[list[int|float]]): The text boxes.
boundaries (list[list[int|float]]): The boundary list.
char_quads (list[list[list[int|float]]]): A 2d list of char boxes.
char_quads[i] is for the ith text, and char_quads[i][j] is the jth
char of the ith text.
chars (list[list[char]]). The string for each text box.
thickness (int): Thickness of lines.
font_scale (float): Font scales of texts.
show (bool): Whether to show the image.
win_name (str): The window name.
wait_time (int): Value of waitKey param.
out_file (str or None): The filename of the output.
"""
assert isinstance(img, (np.ndarray, str))
assert utils.is_2dlist(text_quads)
assert utils.is_2dlist(boundaries)
assert utils.is_3dlist(char_quads)
assert utils.is_2dlist(chars)
assert utils.equal_len(text_quads, char_quads, boundaries)
img = mmcv.imread(img)
char_color = [mmcv.color_val('blue'), mmcv.color_val('green')]
text_color = mmcv.color_val('red')
text_inx = 0
for text_box, boundary, char_box, txt in zip(text_quads, boundaries,
char_quads, chars):
text_box = np.array(text_box)
boundary = np.array(boundary)
text_box = text_box.reshape(-1, 2).astype(np.int32)
cv2.polylines(
img, [text_box.reshape(-1, 1, 2)],
True,
color=text_color,
thickness=thickness)
if boundary.shape[0] > 0:
cv2.polylines(
img, [boundary.reshape(-1, 1, 2)],
True,
color=text_color,
thickness=thickness)
for b in char_box:
b = np.array(b)
c = char_color[text_inx % 2]
b = b.astype(np.int32)
cv2.polylines(
img, [b.reshape(-1, 1, 2)], True, color=c, thickness=thickness)
label_text = ''.join(txt)
cv2.putText(img, label_text, (text_box[0, 0], text_box[0, 1] - 2),
cv2.FONT_HERSHEY_COMPLEX, font_scale, text_color)
text_inx = text_inx + 1
if show:
mmcv.imshow(img, win_name, wait_time)
if out_file is not None:
mmcv.imwrite(img, out_file)
return img
def tile_image(images):
"""Combined multiple images to one vertically.
Args:
images (list[np.ndarray]): Images to be combined.
"""
assert isinstance(images, list)
assert len(images) > 0
for i, _ in enumerate(images):
if len(images[i].shape) == 2:
images[i] = cv2.cvtColor(images[i], cv2.COLOR_GRAY2BGR)
widths = [img.shape[1] for img in images]
heights = [img.shape[0] for img in images]
h, w = sum(heights), max(widths)
vis_img = np.zeros((h, w, 3), dtype=np.uint8)
offset_y = 0
for image in images:
img_h, img_w = image.shape[:2]
vis_img[offset_y:(offset_y + img_h), 0:img_w, :] = image
offset_y += img_h
return vis_img
def imshow_text_label(img,
pred_label,
gt_label,
show=False,
win_name='',
wait_time=-1,
out_file=None):
"""Draw predicted texts and ground truth texts on images.
Args:
img (str or np.ndarray): Image filename or loaded image.
pred_label (str): Predicted texts.
gt_label (str): Ground truth texts.
show (bool): Whether to show the image.
win_name (str): The window name.
wait_time (int): Value of waitKey param.
out_file (str): The filename of the output.
"""
assert isinstance(img, (np.ndarray, str))
assert isinstance(pred_label, str)
assert isinstance(gt_label, str)
assert isinstance(show, bool)
assert isinstance(win_name, str)
assert isinstance(wait_time, int)
img = mmcv.imread(img)
src_h, src_w = img.shape[:2]
resize_height = 64
resize_width = int(1.0 * src_w / src_h * resize_height)
img = cv2.resize(img, (resize_width, resize_height))
h, w = img.shape[:2]
if is_contain_chinese(pred_label):
pred_img = draw_texts_by_pil(img, [pred_label], None)
else:
pred_img = np.ones((h, w, 3), dtype=np.uint8) * 255
cv2.putText(pred_img, pred_label, (5, 40), cv2.FONT_HERSHEY_SIMPLEX,
0.9, (0, 0, 255), 2)
images = [pred_img, img]
if gt_label != '':
if is_contain_chinese(gt_label):
gt_img = draw_texts_by_pil(img, [gt_label], None)
else:
gt_img = np.ones((h, w, 3), dtype=np.uint8) * 255
cv2.putText(gt_img, gt_label, (5, 40), cv2.FONT_HERSHEY_SIMPLEX,
0.9, (255, 0, 0), 2)
images.append(gt_img)
img = tile_image(images)
if show:
mmcv.imshow(img, win_name, wait_time)
if out_file is not None:
mmcv.imwrite(img, out_file)
return img
def imshow_node(img,
result,
boxes,
idx_to_cls={},
show=False,
win_name='',
wait_time=-1,
out_file=None):
img = mmcv.imread(img)
h, w = img.shape[:2]
max_value, max_idx = torch.max(result['nodes'].detach().cpu(), -1)
node_pred_label = max_idx.numpy().tolist()
node_pred_score = max_value.numpy().tolist()
texts, text_boxes = [], []
for i, box in enumerate(boxes):
new_box = [[box[0], box[1]], [box[2], box[1]], [box[2], box[3]],
[box[0], box[3]]]
Pts = np.array([new_box], np.int32)
cv2.polylines(
img, [Pts.reshape((-1, 1, 2))],
True,
color=(255, 255, 0),
thickness=1)
x_min = int(min(point[0] for point in new_box))
y_min = int(min(point[1] for point in new_box))
# text
pred_label = str(node_pred_label[i])
if pred_label in idx_to_cls:
pred_label = idx_to_cls[pred_label]
pred_score = f'{node_pred_score[i]:.2f}'
text = pred_label + '(' + pred_score + ')'
texts.append(text)
# text box
font_size = int(
min(
abs(new_box[3][1] - new_box[0][1]),
abs(new_box[1][0] - new_box[0][0])))
char_num = len(text)
text_box = [
x_min * 2, y_min, x_min * 2 + font_size * char_num, y_min,
x_min * 2 + font_size * char_num, y_min + font_size, x_min * 2,
y_min + font_size
]
text_boxes.append(text_box)
pred_img = np.ones((h, w * 2, 3), dtype=np.uint8) * 255
pred_img = draw_texts_by_pil(
pred_img, texts, text_boxes, draw_box=False, on_ori_img=True)
vis_img = np.ones((h, w * 3, 3), dtype=np.uint8) * 255
vis_img[:, :w] = img
vis_img[:, w:] = pred_img
if show:
mmcv.imshow(vis_img, win_name, wait_time)
if out_file is not None:
mmcv.imwrite(vis_img, out_file)
return vis_img
def gen_color():
"""Generate BGR color schemes."""
color_list = [(101, 67, 254), (154, 157, 252), (173, 205, 249),
(123, 151, 138), (187, 200, 178), (148, 137, 69),
(169, 200, 200), (155, 175, 131), (154, 194, 182),
(178, 190, 137), (140, 211, 222), (83, 156, 222)]
return color_list
def draw_polygons(img, polys):
"""Draw polygons on image.
Args:
img (np.ndarray): The original image.
polys (list[list[float]]): Detected polygons.
Return:
out_img (np.ndarray): Visualized image.
"""
dst_img = img.copy()
color_list = gen_color()
out_img = dst_img
for idx, poly in enumerate(polys):
poly = np.array(poly).reshape((-1, 1, 2)).astype(np.int32)
cv2.drawContours(
img,
np.array([poly]),
-1,
color_list[idx % len(color_list)],
thickness=cv2.FILLED)
out_img = cv2.addWeighted(dst_img, 0.5, img, 0.5, 0)
return out_img
def get_optimal_font_scale(text, width):
"""Get optimal font scale for cv2.putText.
Args:
text (str): Text in one box.
width (int): The box width.
"""
for scale in reversed(range(0, 60, 1)):
textSize = cv2.getTextSize(
text,
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=scale / 10,
thickness=1)
new_width = textSize[0][0]
if new_width <= width:
return scale / 10
return 1
def draw_texts(img, texts, boxes=None, draw_box=True, on_ori_img=False):
"""Draw boxes and texts on empty img.
Args:
img (np.ndarray): The original image.
texts (list[str]): Recognized texts.
boxes (list[list[float]]): Detected bounding boxes.
draw_box (bool): Whether draw box or not. If False, draw text only.
on_ori_img (bool): If True, draw box and text on input image,
else, on a new empty image.
Return:
out_img (np.ndarray): Visualized image.
"""
color_list = gen_color()
h, w = img.shape[:2]
if boxes is None:
boxes = [[0, 0, w, 0, w, h, 0, h]]
assert len(texts) == len(boxes)
if on_ori_img:
out_img = img
else:
out_img = np.ones((h, w, 3), dtype=np.uint8) * 255
for idx, (box, text) in enumerate(zip(boxes, texts)):
if draw_box:
new_box = [[x, y] for x, y in zip(box[0::2], box[1::2])]
Pts = np.array([new_box], np.int32)
cv2.polylines(
out_img, [Pts.reshape((-1, 1, 2))],
True,
color=color_list[idx % len(color_list)],
thickness=1)
min_x = int(min(box[0::2]))
max_y = int(
np.mean(np.array(box[1::2])) + 0.2 *
(max(box[1::2]) - min(box[1::2])))
font_scale = get_optimal_font_scale(
text, int(max(box[0::2]) - min(box[0::2])))
cv2.putText(out_img, text, (min_x, max_y), cv2.FONT_HERSHEY_SIMPLEX,
font_scale, (0, 0, 0), 1)
return out_img
def draw_texts_by_pil(img,
texts,
boxes=None,
draw_box=True,
on_ori_img=False,
font_size=None,
fill_color=None,
draw_pos=None,
return_text_size=False):
"""Draw boxes and texts on empty image, especially for Chinese.
Args:
img (np.ndarray): The original image.
texts (list[str]): Recognized texts.
boxes (list[list[float]]): Detected bounding boxes.
draw_box (bool): Whether draw box or not. If False, draw text only.
on_ori_img (bool): If True, draw box and text on input image,
else on a new empty image.
font_size (int, optional): Size to create a font object for a font.
fill_color (tuple(int), optional): Fill color for text.
draw_pos (list[tuple(int)], optional): Start point to draw each text.
return_text_size (bool): If True, return the list of text size.
Returns:
(np.ndarray, list[tuple]) or np.ndarray: Return a tuple
``(out_img, text_sizes)``, where ``out_img`` is the output image
with texts drawn on it and ``text_sizes`` are the size of drawing
texts. If ``return_text_size`` is False, only the output image will be
returned.
"""
color_list = gen_color()
h, w = img.shape[:2]
if boxes is None:
boxes = [[0, 0, w, 0, w, h, 0, h]]
if draw_pos is None:
draw_pos = [None for _ in texts]
assert len(boxes) == len(texts) == len(draw_pos)
if fill_color is None:
fill_color = (0, 0, 0)
if on_ori_img:
out_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
else:
out_img = Image.new('RGB', (w, h), color=(255, 255, 255))
out_draw = ImageDraw.Draw(out_img)
text_sizes = []
for idx, (box, text, ori_point) in enumerate(zip(boxes, texts, draw_pos)):
if len(text) == 0:
continue
min_x, max_x = min(box[0::2]), max(box[0::2])
min_y, max_y = min(box[1::2]), max(box[1::2])
color = tuple(list(color_list[idx % len(color_list)])[::-1])
if draw_box:
out_draw.line(box, fill=color, width=1)
dirname, _ = os.path.split(os.path.abspath(__file__))
font_path = os.path.join(dirname, 'font.TTF')
if not os.path.exists(font_path):
url = ('https://download.openmmlab.com/mmocr/data/font.TTF')
print(f'Downloading {url} ...')
local_filename, _ = urllib.request.urlretrieve(url)
shutil.move(local_filename, font_path)
tmp_font_size = font_size
if tmp_font_size is None:
box_width = max(max_x - min_x, max_y - min_y)
tmp_font_size = int(0.9 * box_width / len(text))
fnt = ImageFont.truetype(font_path, tmp_font_size)
if ori_point is None:
ori_point = (min_x + 1, min_y + 1)
out_draw.text(ori_point, text, font=fnt, fill=fill_color)
text_sizes.append(fnt.getsize(text))
del out_draw
out_img = cv2.cvtColor(np.asarray(out_img), cv2.COLOR_RGB2BGR)
if return_text_size:
return out_img, text_sizes
return out_img
def is_contain_chinese(check_str):
"""Check whether string contains Chinese or not.
Args:
check_str (str): String to be checked.
Return True if contains Chinese, else False.
"""
for ch in check_str:
if '\u4e00' <= ch <= '\u9fff':
return True
return False
def det_recog_show_result(img, end2end_res, out_file=None):
"""Draw `result`(boxes and texts) on `img`.
Args:
img (str or np.ndarray): The image to be displayed.
end2end_res (dict): Text detect and recognize results.
out_file (str): Image path where the visualized image should be saved.
Return:
out_img (np.ndarray): Visualized image.
"""
img = mmcv.imread(img)
boxes, texts = [], []
for res in end2end_res['result']:
boxes.append(res['box'])
texts.append(res['text'])
box_vis_img = draw_polygons(img, boxes)
if is_contain_chinese(''.join(texts)):
text_vis_img = draw_texts_by_pil(img, texts, boxes)
else:
text_vis_img = draw_texts(img, texts, boxes)
h, w = img.shape[:2]
out_img = np.ones((h, w * 2, 3), dtype=np.uint8)
out_img[:, :w, :] = box_vis_img
out_img[:, w:, :] = text_vis_img
if out_file:
mmcv.imwrite(out_img, out_file)
return out_img
def draw_edge_result(img, result, edge_thresh=0.5, keynode_thresh=0.5):
"""Draw text and their relationship on empty images.
Args:
img (np.ndarray): The original image.
result (dict): The result of model forward_test, including:
- img_metas (list[dict]): List of meta information dictionary.
- nodes (Tensor): Node prediction with size:
number_node * node_classes.
- edges (Tensor): Edge prediction with size: number_edge * 2.
edge_thresh (float): Score threshold for edge classification.
keynode_thresh (float): Score threshold for node
(``key``) classification.
Returns:
np.ndarray: The image with key, value and relation drawn on it.
"""
h, w = img.shape[:2]
vis_area_width = w // 3 * 2
vis_area_height = h
dist_key_to_value = vis_area_width // 2
dist_pair_to_pair = 30
bbox_x1 = dist_pair_to_pair
bbox_y1 = 0
new_w = vis_area_width
new_h = vis_area_height
pred_edge_img = np.ones((new_h, new_w, 3), dtype=np.uint8) * 255
nodes = result['nodes'].detach().cpu()
texts = result['img_metas'][0]['ori_texts']
num_nodes = result['nodes'].size(0)
edges = result['edges'].detach().cpu()[:, -1].view(num_nodes, num_nodes)
# (i, j) will be a valid pair
# either edge_score(node_i->node_j) > edge_thresh
# or edge_score(node_j->node_i) > edge_thresh
pairs = (torch.max(edges, edges.T) > edge_thresh).nonzero(as_tuple=True)
pairs = (pairs[0].numpy().tolist(), pairs[1].numpy().tolist())
# 1. "for n1, n2 in zip(*pairs) if n1 < n2":
# Only (n1, n2) will be included if n1 < n2 but not (n2, n1), to
# avoid duplication.
# 2. "(n1, n2) if nodes[n1, 1] > nodes[n1, 2]":
# nodes[n1, 1] is the score that this node is predicted as key,
# nodes[n1, 2] is the score that this node is predicted as value.
# If nodes[n1, 1] > nodes[n1, 2], n1 will be the index of key,
# so that n2 will be the index of value.
result_pairs = [(n1, n2) if nodes[n1, 1] > nodes[n1, 2] else (n2, n1)
for n1, n2 in zip(*pairs) if n1 < n2]
result_pairs.sort()
result_pairs_score = [
torch.max(edges[n1, n2], edges[n2, n1]) for n1, n2 in result_pairs
]
key_current_idx = -1
pos_current = (-1, -1)
newline_flag = False
key_font_size = 15
value_font_size = 15
key_font_color = (0, 0, 0)
value_font_color = (0, 0, 255)
arrow_color = (0, 0, 255)
score_color = (0, 255, 0)
for pair, pair_score in zip(result_pairs, result_pairs_score):
key_idx = pair[0]
if nodes[key_idx, 1] < keynode_thresh:
continue
if key_idx != key_current_idx:
# move y-coords down for a new key
bbox_y1 += 10
# enlarge blank area to show key-value info
if newline_flag:
bbox_x1 += vis_area_width
tmp_img = np.ones(
(new_h, new_w + vis_area_width, 3), dtype=np.uint8) * 255
tmp_img[:new_h, :new_w] = pred_edge_img
pred_edge_img = tmp_img
new_w += vis_area_width
newline_flag = False
bbox_y1 = 10
key_text = texts[key_idx]
key_pos = (bbox_x1, bbox_y1)
value_idx = pair[1]
value_text = texts[value_idx]
value_pos = (bbox_x1 + dist_key_to_value, bbox_y1)
if key_idx != key_current_idx:
# draw text for a new key
key_current_idx = key_idx
pred_edge_img, text_sizes = draw_texts_by_pil(
pred_edge_img, [key_text],
draw_box=False,
on_ori_img=True,
font_size=key_font_size,
fill_color=key_font_color,
draw_pos=[key_pos],
return_text_size=True)
pos_right_bottom = (key_pos[0] + text_sizes[0][0],
key_pos[1] + text_sizes[0][1])
pos_current = (pos_right_bottom[0] + 5, bbox_y1 + 10)
pred_edge_img = cv2.arrowedLine(
pred_edge_img, (pos_right_bottom[0] + 5, bbox_y1 + 10),
(bbox_x1 + dist_key_to_value - 5, bbox_y1 + 10), arrow_color,
1)
score_pos_x = int(
(pos_right_bottom[0] + bbox_x1 + dist_key_to_value) / 2.)
score_pos_y = bbox_y1 + 10 - int(key_font_size * 0.3)
else:
# draw arrow from key to value
if newline_flag:
tmp_img = np.ones((new_h + dist_pair_to_pair, new_w, 3),
dtype=np.uint8) * 255
tmp_img[:new_h, :new_w] = pred_edge_img
pred_edge_img = tmp_img
new_h += dist_pair_to_pair
pred_edge_img = cv2.arrowedLine(pred_edge_img, pos_current,
(bbox_x1 + dist_key_to_value - 5,
bbox_y1 + 10), arrow_color, 1)
score_pos_x = int(
(pos_current[0] + bbox_x1 + dist_key_to_value - 5) / 2.)
score_pos_y = int((pos_current[1] + bbox_y1 + 10) / 2.)
# draw edge score
cv2.putText(pred_edge_img, f'{pair_score:.2f}',
(score_pos_x, score_pos_y), cv2.FONT_HERSHEY_COMPLEX, 0.4,
score_color)
# draw text for value
pred_edge_img = draw_texts_by_pil(
pred_edge_img, [value_text],
draw_box=False,
on_ori_img=True,
font_size=value_font_size,
fill_color=value_font_color,
draw_pos=[value_pos],
return_text_size=False)
bbox_y1 += dist_pair_to_pair
if bbox_y1 + dist_pair_to_pair >= new_h:
newline_flag = True
return pred_edge_img
def imshow_edge(img,
result,
boxes,
show=False,
win_name='',
wait_time=-1,
out_file=None):
"""Display the prediction results of the nodes and edges of the KIE model.
Args:
img (np.ndarray): The original image.
result (dict): The result of model forward_test, including:
- img_metas (list[dict]): List of meta information dictionary.
- nodes (Tensor): Node prediction with size: \
number_node * node_classes.
- edges (Tensor): Edge prediction with size: number_edge * 2.
boxes (list): The text boxes corresponding to the nodes.
show (bool): Whether to show the image. Default: False.
win_name (str): The window name. Default: ''
wait_time (float): Value of waitKey param. Default: 0.
out_file (str or None): The filename to write the image.
Default: None.
Returns:
np.ndarray: The image with key, value and relation drawn on it.
"""
img = mmcv.imread(img)
h, w = img.shape[:2]
color_list = gen_color()
for i, box in enumerate(boxes):
new_box = [[box[0], box[1]], [box[2], box[1]], [box[2], box[3]],
[box[0], box[3]]]
Pts = np.array([new_box], np.int32)
cv2.polylines(
img, [Pts.reshape((-1, 1, 2))],
True,
color=color_list[i % len(color_list)],
thickness=1)
pred_img_h = h
pred_img_w = w
pred_edge_img = draw_edge_result(img, result)
pred_img_h = max(pred_img_h, pred_edge_img.shape[0])
pred_img_w += pred_edge_img.shape[1]
vis_img = np.zeros((pred_img_h, pred_img_w, 3), dtype=np.uint8)
vis_img[:h, :w] = img
vis_img[:, w:] = 255
height_t, width_t = pred_edge_img.shape[:2]
vis_img[:height_t, w:(w + width_t)] = pred_edge_img
if show:
mmcv.imshow(vis_img, win_name, wait_time)
if out_file is not None:
mmcv.imwrite(vis_img, out_file)
res_dic = {
'boxes': boxes,
'nodes': result['nodes'].detach().cpu(),
'edges': result['edges'].detach().cpu(),
'metas': result['img_metas'][0]
}
mmengine.dump(res_dic, f'{out_file}_res.pkl')
return vis_img

View File

@ -0,0 +1,55 @@
# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import numpy as np
from mmocr.visualization import BaseLocalVisualizer
class TestBaseLocalVisualizer(TestCase):
def test_get_labels_image(self):
labels = ['a', 'b', 'c']
image = np.zeros((40, 40, 3), dtype=np.uint8)
bboxes = np.array([[0, 0, 10, 10], [10, 10, 20, 20], [20, 20, 30, 30]])
labels_image = BaseLocalVisualizer().get_labels_image(
image,
labels,
bboxes=bboxes,
auto_font_size=True,
colors=['r', 'r', 'r', 'r'])
self.assertEqual(labels_image.shape, (40, 40, 3))
def test_get_polygons_image(self):
polygons = [np.array([0, 0, 10, 10, 20, 20, 30, 30]).reshape(-1, 2)]
image = np.zeros((40, 40, 3), dtype=np.uint8)
polygons_image = BaseLocalVisualizer().get_polygons_image(
image, polygons, colors=['r', 'r', 'r', 'r'])
self.assertEqual(polygons_image.shape, (40, 40, 3))
polygons_image = BaseLocalVisualizer().get_polygons_image(
image, polygons, colors=['r', 'r', 'r', 'r'], filling=True)
self.assertEqual(polygons_image.shape, (40, 40, 3))
def test_get_bboxes_image(self):
bboxes = np.array([[0, 0, 10, 10], [10, 10, 20, 20], [20, 20, 30, 30]])
image = np.zeros((40, 40, 3), dtype=np.uint8)
bboxes_image = BaseLocalVisualizer().get_bboxes_image(
image, bboxes, colors=['r', 'r', 'r', 'r'])
self.assertEqual(bboxes_image.shape, (40, 40, 3))
bboxes_image = BaseLocalVisualizer().get_bboxes_image(
image, bboxes, colors=['r', 'r', 'r', 'r'], filling=True)
self.assertEqual(bboxes_image.shape, (40, 40, 3))
def test_cat_images(self):
image1 = np.zeros((40, 40, 3), dtype=np.uint8)
image2 = np.zeros((40, 40, 3), dtype=np.uint8)
image = BaseLocalVisualizer()._cat_image([image1, image2], axis=1)
self.assertEqual(image.shape, (40, 80, 3))
image = BaseLocalVisualizer()._cat_image([], axis=0)
self.assertIsNone(image)
image = BaseLocalVisualizer()._cat_image([image1, None], axis=0)
self.assertEqual(image.shape, (40, 40, 3))

View File

@ -105,6 +105,21 @@ class TestTextKIELocalVisualizer(unittest.TestCase):
out_file=out_file)
self._assert_image_and_shape(out_file, (h, w * 4, c))
visualizer = KIELocalVisualizer(is_openset=False)
visualizer.dataset_meta = dict(category=[
dict(id=0, name='bg'),
dict(id=1, name='key'),
dict(id=2, name='value'),
dict(id=3, name='other')
])
visualizer.add_datasample(
'image',
image,
self.data_sample,
draw_pred=False,
out_file=out_file)
self._assert_image_and_shape(out_file, (h, w * 3, c))
def _assert_image_and_shape(self, out_file, out_shape):
self.assertTrue(osp.exists(out_file))
drawn_img = cv2.imread(out_file)

View File

@ -101,6 +101,10 @@ class TestTextDetLocalVisualizer(unittest.TestCase):
out_file=out_file)
self._assert_image_and_shape(out_file, (h, w, c))
det_local_visualizer.add_datasample(
'image', image, None, out_file=out_file)
self._assert_image_and_shape(out_file, (h, w, c))
def _assert_image_and_shape(self, out_file, out_shape):
self.assertTrue(osp.exists(out_file))
drawn_img = cv2.imread(out_file)

View File

@ -46,7 +46,7 @@ class TestTextDetLocalVisualizer(unittest.TestCase):
draw_pred=False)
self._assert_image_and_shape(out_file, (h * 2, w, 3))
# draw_gt = True + gt_sample + pred_sample
# draw_gt = True
recog_local_visualizer.add_datasample(
'image',
image,
@ -56,7 +56,13 @@ class TestTextDetLocalVisualizer(unittest.TestCase):
draw_pred=True)
self._assert_image_and_shape(out_file, (h * 3, w, 3))
# draw_gt = False + gt_sample + pred_sample
# draw_gt = False
recog_local_visualizer.add_datasample(
'image', image, data_sample, draw_gt=False, out_file=out_file)
self._assert_image_and_shape(out_file, (h * 2, w, 3))
# gray image
image = np.random.randint(0, 256, size=(h, w)).astype('uint8')
recog_local_visualizer.add_datasample(
'image', image, data_sample, draw_gt=False, out_file=out_file)
self._assert_image_and_shape(out_file, (h * 2, w, 3))

View File

@ -0,0 +1,113 @@
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import tempfile
import unittest
import cv2
import numpy as np
import torch
from mmengine.structures import InstanceData
from mmocr.structures import TextDetDataSample
from mmocr.utils import bbox2poly
from mmocr.visualization import TextSpottingLocalVisualizer
class TestTextKIELocalVisualizer(unittest.TestCase):
def setUp(self):
h, w = 12, 10
self.image = np.random.randint(0, 256, size=(h, w, 3)).astype('uint8')
# gt_instances
data_sample = TextDetDataSample()
gt_instances_data = dict(
bboxes=self._rand_bboxes(5, h, w),
polygons=self._rand_polys(5, h, w),
labels=torch.zeros(5, ),
texts=['text1', 'text2', 'text3', 'text4', 'text5'])
gt_instances = InstanceData(**gt_instances_data)
data_sample.gt_instances = gt_instances
pred_instances_data = dict(
bboxes=self._rand_bboxes(5, h, w),
labels=torch.zeros(5, ),
scores=torch.rand((5, )),
texts=['text1', 'text2', 'text3', 'text4', 'text5'])
pred_instances = InstanceData(**pred_instances_data)
data_sample.pred_instances = pred_instances
data_sample = data_sample.numpy()
self.data_sample = data_sample
@staticmethod
def _rand_bboxes(num_boxes, h, w):
cx, cy, bw, bh = torch.rand(num_boxes, 4).T
tl_x = ((cx * w) - (w * bw / 2)).clamp(0, w).unsqueeze(0)
tl_y = ((cy * h) - (h * bh / 2)).clamp(0, h).unsqueeze(0)
br_x = ((cx * w) + (w * bw / 2)).clamp(0, w).unsqueeze(0)
br_y = ((cy * h) + (h * bh / 2)).clamp(0, h).unsqueeze(0)
bboxes = torch.cat([tl_x, tl_y, br_x, br_y], dim=0).T
return bboxes
def _rand_polys(self, num_bboxes, h, w):
bboxes = self._rand_bboxes(num_bboxes, h, w)
bboxes = bboxes.tolist()
polys = [bbox2poly(bbox) for bbox in bboxes]
return polys
def test_add_datasample(self):
image = self.image
h, w, c = image.shape
visualizer = TextSpottingLocalVisualizer()
visualizer.add_datasample('image', image, self.data_sample)
with tempfile.TemporaryDirectory() as tmp_dir:
# test out
out_file = osp.join(tmp_dir, 'out_file.jpg')
visualizer.add_datasample(
'image',
image,
self.data_sample,
out_file=out_file,
draw_gt=False,
draw_pred=False)
self._assert_image_and_shape(out_file, (h, w, c))
visualizer.add_datasample(
'image', image, self.data_sample, out_file=out_file)
self._assert_image_and_shape(out_file, (h * 2, w * 2, c))
visualizer.add_datasample(
'image',
image,
self.data_sample,
draw_gt=False,
out_file=out_file)
self._assert_image_and_shape(out_file, (h, w * 2, c))
visualizer.add_datasample(
'image',
image,
self.data_sample,
draw_pred=False,
out_file=out_file)
self._assert_image_and_shape(out_file, (h, w * 2, c))
bboxes = self.data_sample.pred_instances.pop('bboxes')
bboxes = bboxes.tolist()
polys = [bbox2poly(bbox) for bbox in bboxes]
self.data_sample.pred_instances.polygons = polys
visualizer.add_datasample(
'image',
image,
self.data_sample,
draw_gt=False,
out_file=out_file)
self._assert_image_and_shape(out_file, (h, w * 2, c))
def _assert_image_and_shape(self, out_file, out_shape):
self.assertTrue(osp.exists(out_file))
drawn_img = cv2.imread(out_file)
self.assertTrue(drawn_img.shape == out_shape)