[Fix] Fix some config errors

This commit is contained in:
jiangqing.vendor 2022-07-20 11:11:41 +00:00 committed by gaotongxiao
parent f5e93d0eba
commit e303404215
34 changed files with 209 additions and 171 deletions

View File

@ -1,15 +1,14 @@
# Text Recognition Training set, including: # Text Recognition Training set, including:
# Synthetic Datasets: Syn90k # Synthetic Datasets: Syn90k
data_root = 'data/recog' data_root = 'data/rec'
train_img_prefix1 = 'Syn90k/mnt/ramdisk/max/90kDICT32px' train_img_prefix1 = 'Syn90k/mnt/ramdisk/max/90kDICT32px'
train_ann_file1 = 'Syn90k/label.json' train_ann_file1 = 'Syn90k/label.json'
file_client_args = dict(backend='disk')
train = dict( MJ = dict(
type='OCRDataset', type='OCRDataset',
data_root=data_root, data_root=data_root,
data_prefix=dict(img_path=train_img_prefix1), data_prefix=dict(img_path=train_img_prefix1),
ann_file=train_ann_file1, ann_file=train_ann_file1,
test_mode=False, test_mode=False,
pipeline=None) pipeline=None)
train_list = [train] train_list = [MJ]

View File

@ -2,12 +2,11 @@
# Synthetic Datasets: SynthText, Syn90k # Synthetic Datasets: SynthText, Syn90k
# Both annotations are filtered so that # Both annotations are filtered so that
# only alphanumeric terms are left # only alphanumeric terms are left
data_root = 'data/recog' data_root = 'data/rec'
train_img_prefix1 = 'Syn90k/mnt/ramdisk/max/90kDICT32px' train_img_prefix1 = 'Syn90k/mnt/ramdisk/max/90kDICT32px'
train_ann_file1 = 'Syn90k/label.json' train_ann_file1 = 'Syn90k/label.json'
file_client_args = dict(backend='disk')
train1 = dict( MJ = dict(
type='OCRDataset', type='OCRDataset',
data_root=data_root, data_root=data_root,
data_prefix=dict(img_path=train_img_prefix1), data_prefix=dict(img_path=train_img_prefix1),
@ -17,9 +16,13 @@ train1 = dict(
train_img_prefix2 = 'SynthText/synthtext/SynthText_patch_horizontal' train_img_prefix2 = 'SynthText/synthtext/SynthText_patch_horizontal'
train_ann_file2 = 'SynthText/alphanumeric_label.json' train_ann_file2 = 'SynthText/alphanumeric_label.json'
train2 = {key: value for key, value in train1.items()}
train2['data_root'] = data_root
train2['data_prefix'] = dict(img_path=train_img_prefix2),
train2['ann_file'] = dict(img_path=train_ann_file2),
train_list = [train1, train2] ST = dict(
type='OCRDataset',
data_root=data_root,
data_prefix=dict(img_path=train_img_prefix2),
ann_file=train_ann_file2,
test_mode=False,
pipeline=None)
train_list = [MJ, ST]

View File

@ -1,13 +1,13 @@
# Text Recognition Training set, including: # Text Recognition Training set, including:
# Synthetic Datasets: SynthText, Syn90k # Synthetic Datasets: SynthText, Syn90k
data_root = 'data/recog' data_root = 'data/rec'
train_img_prefix1 = 'Syn90k/mnt/ramdisk/max/90kDICT32px' train_img_prefix1 = 'Syn90k/mnt/ramdisk/max/90kDICT32px'
train_ann_file1 = 'Syn90k/label.json' train_ann_file1 = 'Syn90k/label.json'
file_client_args = dict(backend='disk') file_client_args = dict(backend='disk')
train1 = dict( MJ = dict(
type='OCRDataset', type='OCRDataset',
data_root=data_root, data_root=data_root,
data_prefix=dict(img_path=train_img_prefix1), data_prefix=dict(img_path=train_img_prefix1),
@ -17,9 +17,13 @@ train1 = dict(
train_img_prefix2 = 'SynthText/synthtext/SynthText_patch_horizontal' train_img_prefix2 = 'SynthText/synthtext/SynthText_patch_horizontal'
train_ann_file2 = 'SynthText/label.json' train_ann_file2 = 'SynthText/label.json'
train2 = {key: value for key, value in train1.items()}
train2['data_root'] = data_root
train2['data_prefix'] = dict(img_path=train_img_prefix2),
train2['ann_file'] = dict(img_path=train_ann_file2),
train_list = [train1, train2] ST = dict(
type='OCRDataset',
data_root=data_root,
data_prefix=dict(img_path=train_img_prefix2),
ann_file=train_ann_file2,
test_mode=False,
pipeline=None)
train_list = [MJ, ST]

View File

@ -1,7 +1,7 @@
# Text Recognition Training set, including: # Text Recognition Training set, including:
# Synthetic Datasets: SynthText, SynthAdd, Syn90k # Synthetic Datasets: SynthText, SynthAdd, Syn90k
# Real Dataset: IC11, IC13, IC15, COCO-Test, IIIT5k # Real Dataset: IC11, IC13, IC15, COCO-Test, IIIT5k
data_root = 'data/recog' data_root = 'data/rec'
train_img_prefix1 = 'icdar_2011' train_img_prefix1 = 'icdar_2011'
train_img_prefix2 = 'icdar_2013' train_img_prefix2 = 'icdar_2013'
@ -9,19 +9,19 @@ train_img_prefix3 = 'icdar_2015'
train_img_prefix4 = 'coco_text' train_img_prefix4 = 'coco_text'
train_img_prefix5 = 'IIIT5K' train_img_prefix5 = 'IIIT5K'
train_img_prefix6 = 'SynthText_Add' train_img_prefix6 = 'SynthText_Add'
train_img_prefix7 = 'SynthText' train_img_prefix7 = 'SynthText/synthtext/SynthText_patch_horizontal'
train_img_prefix8 = 'Syn90k' train_img_prefix8 = 'Syn90k/mnt/ramdisk/max/90kDICT32px'
train_ann_file1 = 'icdar_2011/train_label.json', train_ann_file1 = 'icdar_2011/train_label.json',
train_ann_file2 = 'icdar_2013/train_label.json', train_ann_file2 = 'icdar_2013/train_label.json',
train_ann_file3 = 'icdar_2015/train_label.json', train_ann_file3 = 'icdar_2015/train_label.json',
train_ann_file4 = 'coco_text/train_label.json', train_ann_file4 = 'coco_text/train_label.json',
train_ann_file5 = 'IIIT5K/train_label.json', train_ann_file5 = 'IIIT5K/train_label.json',
train_ann_file6 = 'SynthText_Add/label.json', train_ann_file6 = 'SynthText_Add/train_label.json',
train_ann_file7 = 'SynthText/shuffle_labels.json', train_ann_file7 = 'SynthText/shuffle_label.json',
train_ann_file8 = 'Syn90k/shuffle_labels.json' train_ann_file8 = 'Syn90k/mnt/ramdisk/max/90kDICT32px/shuffle_label.json'
train1 = dict( IC11 = dict(
type='OCRDataset', type='OCRDataset',
data_root=data_root, data_root=data_root,
data_prefix=dict(img_path=train_img_prefix1), data_prefix=dict(img_path=train_img_prefix1),
@ -29,32 +29,60 @@ train1 = dict(
test_mode=False, test_mode=False,
pipeline=None) pipeline=None)
train2 = {key: value for key, value in train1.items()} IC13 = dict(
train2['data_prefix'] = dict(img_path=train_img_prefix2) type='OCRDataset',
train2['ann_file'] = train_ann_file2 data_root=data_root,
data_prefix=dict(img_path=train_img_prefix2),
ann_file=train_ann_file2,
test_mode=False,
pipeline=None)
train3 = {key: value for key, value in train1.items()} IC15 = dict(
train3['img_prefix'] = dict(img_path=train_img_prefix3) type='OCRDataset',
train3['ann_file'] = train_ann_file3 data_root=data_root,
data_prefix=dict(img_path=train_img_prefix3),
ann_file=train_ann_file3,
test_mode=False,
pipeline=None)
train4 = {key: value for key, value in train1.items()} COCO = dict(
train4['img_prefix'] = dict(img_path=train_img_prefix4) type='OCRDataset',
train4['ann_file'] = train_ann_file4 data_root=data_root,
data_prefix=dict(img_path=train_img_prefix4),
ann_file=train_ann_file4,
test_mode=False,
pipeline=None)
train5 = {key: value for key, value in train1.items()} IIIT5K = dict(
train5['img_prefix'] = dict(img_path=train_img_prefix5) type='OCRDataset',
train5['ann_file'] = train_ann_file5 data_root=data_root,
data_prefix=dict(img_path=train_img_prefix5),
ann_file=train_ann_file5,
test_mode=False,
pipeline=None)
train6 = {key: value for key, value in train1.items()} STADD = dict(
train6['img_prefix'] = dict(img_path=train_img_prefix6) type='OCRDataset',
train6['ann_file'] = train_ann_file6 data_root=data_root,
data_prefix=dict(img_path=train_img_prefix6),
ann_file=train_ann_file6,
test_mode=False,
pipeline=None)
train7 = {key: value for key, value in train1.items()} ST = dict(
train7['img_prefix'] = dict(img_path=train_img_prefix7) type='OCRDataset',
train7['ann_file'] = train_ann_file7 data_root=data_root,
data_prefix=dict(img_path=train_img_prefix7),
ann_file=train_ann_file7,
test_mode=False,
pipeline=None)
train8 = {key: value for key, value in train1.items()} MJ = dict(
train8['img_prefix'] = dict(img_path=train_img_prefix8) type='OCRDataset',
train8['ann_file'] = train_ann_file8 data_root=data_root,
data_prefix=dict(img_path=train_img_prefix8),
ann_file=train_ann_file8,
test_mode=False,
pipeline=None)
train_list = [train1, train2, train3, train4, train5, train6, train7, train8] train_list = [IC13, IC11, IC15, COCO, IIIT5K, STADD, ST, MJ]

View File

@ -1,17 +1,10 @@
# Text Recognition Training set, including: # Text Recognition Training set, including:
# Synthetic Datasets: SynthText, Syn90k # Synthetic Datasets: SynthText, Syn90k
data_root = 'data/recog' data_root = 'data/rec'
train_img_prefix1 = 'Syn90k/mnt/ramdisk/max/90kDICT32px'
train_ann_file1 = 'Syn90k/label.json'
train_img_prefix1 = 'SynthText_Add' MJ = dict(
train_img_prefix2 = 'SynthText/synthtext/' + \
'SynthText_patch_horizontal'
train_img_prefix3 = 'Syn90k/mnt/ramdisk/max/90kDICT32px'
train_ann_file1 = 'SynthText_Add/label.json',
train_ann_file2 = 'SynthText/label.json',
train_ann_file3 = 'Syn90k/label.json'
train1 = dict(
type='OCRDataset', type='OCRDataset',
data_root=data_root, data_root=data_root,
data_prefix=dict(img_path=train_img_prefix1), data_prefix=dict(img_path=train_img_prefix1),
@ -19,12 +12,27 @@ train1 = dict(
test_mode=False, test_mode=False,
pipeline=None) pipeline=None)
train2 = {key: value for key, value in train1.items()} train_img_prefix2 = 'SynthText/synthtext/' + \
train2['data_prefix'] = dict(img_path=train_img_prefix2) 'SynthText_patch_horizontal'
train2['ann_file'] = train_ann_file2 train_ann_file2 = 'SynthText/label.json',
train3 = {key: value for key, value in train1.items()} ST = dict(
train3['img_prefix'] = dict(img_path=train_img_prefix3) type='OCRDataset',
train3['ann_file'] = train_ann_file3 data_root=data_root,
data_prefix=dict(img_path=train_img_prefix2),
ann_file=train_ann_file2,
test_mode=False,
pipeline=None)
train_list = [train1, train2, train3] train_img_prefix3 = 'SynthText_Add'
train_ann_file3 = 'SynthText_Add/label.json'
STADD = dict(
type='OCRDataset',
data_root=data_root,
data_prefix=dict(img_path=train_img_prefix3),
ann_file=train_ann_file3,
test_mode=False,
pipeline=None)
train_list = [MJ, ST, STADD]

View File

@ -2,23 +2,23 @@
# Regular Datasets: IIIT5K, SVT, IC13 # Regular Datasets: IIIT5K, SVT, IC13
# Irregular Datasets: IC15, SVTP, CT80 # Irregular Datasets: IC15, SVTP, CT80
test_root = 'data/recog' test_root = 'data/rec'
test_img_prefix1 = 'IIIT5K/' test_img_prefix1 = 'IIIT5K/'
test_img_prefix2 = 'svt/' test_img_prefix2 = 'svt/'
test_img_prefix3 = 'icdar_2013/' test_img_prefix3 = 'icdar_2013/Challenge2_Test_Task3_Images/'
test_img_prefix4 = 'icdar_2015/' test_img_prefix4 = 'icdar_2015/ch4_test_word_images_gt'
test_img_prefix5 = 'svtp/' test_img_prefix5 = 'svtp/'
test_img_prefix6 = 'ct80/' test_img_prefix6 = 'ct80/'
test_ann_file1 = 'IIIT5K/test_label.josn' test_ann_file1 = 'IIIT5K/test_label.json'
test_ann_file2 = 'svt/test_label.josn' test_ann_file2 = 'svt/test_label.json'
test_ann_file3 = 'icdar_2013/test_label_1015.josn' test_ann_file3 = 'icdar_2013/test_label.json'
test_ann_file4 = 'icdar_2015/test_label.josn' test_ann_file4 = 'icdar_2015/test_label.json'
test_ann_file5 = 'svtp/test_label.josn' test_ann_file5 = 'svtp/test_label.json'
test_ann_file6 = 'ct80/test_label.josn' test_ann_file6 = 'ct80/test_label.json'
test1 = dict( IIIT5K = dict(
type='OCRDataset', type='OCRDataset',
data_root=test_root, data_root=test_root,
data_prefix=dict(img_path=test_img_prefix1), data_prefix=dict(img_path=test_img_prefix1),
@ -26,24 +26,44 @@ test1 = dict(
test_mode=True, test_mode=True,
pipeline=None) pipeline=None)
test2 = {key: value for key, value in test1.items()} SVT = dict(
test2['data_prefix'] = dict(img_path=test_img_prefix2) type='OCRDataset',
test2['ann_file'] = test_ann_file2 data_root=test_root,
data_prefix=dict(img_path=test_img_prefix2),
ann_file=test_ann_file2,
test_mode=True,
pipeline=None)
test3 = {key: value for key, value in test1.items()} IC13 = dict(
test3['data_prefix'] = dict(img_path=test_img_prefix3) type='OCRDataset',
test3['ann_file'] = test_ann_file3 data_root=test_root,
data_prefix=dict(img_path=test_img_prefix3),
ann_file=test_ann_file3,
test_mode=True,
pipeline=None)
test4 = {key: value for key, value in test1.items()} IC15 = dict(
test4['data_prefix'] = dict(img_path=test_img_prefix4) type='OCRDataset',
test4['ann_file'] = test_ann_file4 data_root=test_root,
data_prefix=dict(img_path=test_img_prefix4),
ann_file=test_ann_file4,
test_mode=True,
pipeline=None)
test5 = {key: value for key, value in test1.items()} SVTP = dict(
test5['data_prefix'] = dict(img_path=test_img_prefix5) type='OCRDataset',
test5['ann_file'] = test_ann_file5 data_root=test_root,
data_prefix=dict(img_path=test_img_prefix5),
ann_file=test_ann_file5,
test_mode=True,
pipeline=None)
test6 = {key: value for key, value in test1.items()} CUTE80 = dict(
test6['data_prefix'] = dict(img_path=test_img_prefix6) type='OCRDataset',
test6['ann_file'] = test_ann_file6 data_root=test_root,
data_prefix=dict(img_path=test_img_prefix6),
ann_file=test_ann_file6,
test_mode=True,
pipeline=None)
test_list = [test1, test2, test3, test4, test5, test6] test_list = [IIIT5K, SVT, IC13, IC15, SVTP, CUTE80]

View File

@ -1,4 +1,4 @@
data_root = 'tests/data/recog_toy_dataset' data_root = 'tests/data/rec_toy_dataset'
train_img_prefix = 'imgs/' train_img_prefix = 'imgs/'
train_anno_file = 'label.json' train_anno_file = 'label.json'

View File

@ -1,5 +1,5 @@
_base_ = [ _base_ = [
'fcenet_r50_fpn.py', 'fcenet_r50dcnv2_fpn.py',
'../../_base_/det_datasets/ctw1500.py', '../../_base_/det_datasets/ctw1500.py',
'../../_base_/default_runtime.py', '../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_sgd_1500e.py', '../../_base_/schedules/schedule_sgd_1500e.py',

View File

@ -44,7 +44,7 @@ test_pipeline = [
train_dataloader = dict( train_dataloader = dict(
batch_size=512, batch_size=512,
num_workers=8, num_workers=4,
persistent_workers=True, persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True), sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict( dataset=dict(

View File

@ -45,8 +45,8 @@ test_pipeline = [
] ]
train_dataloader = dict( train_dataloader = dict(
batch_size=256, batch_size=384,
num_workers=2, num_workers=32,
persistent_workers=True, persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True), sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict( dataset=dict(
@ -54,7 +54,7 @@ train_dataloader = dict(
val_dataloader = dict( val_dataloader = dict(
batch_size=128, batch_size=128,
num_workers=2, num_workers=4,
persistent_workers=True, persistent_workers=True,
drop_last=False, drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False), sampler=dict(type='DefaultSampler', shuffle=False),

View File

@ -40,16 +40,16 @@ test_pipeline = [
] ]
train_dataloader = dict( train_dataloader = dict(
batch_size=256, batch_size=8,
num_workers=2, num_workers=4,
persistent_workers=True, persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True), sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict( dataset=dict(
type='ConcatDataset', datasets=train_list, pipeline=test_pipeline)) type='ConcatDataset', datasets=train_list, pipeline=test_pipeline))
val_dataloader = dict( val_dataloader = dict(
batch_size=128, batch_size=1,
num_workers=2, num_workers=4,
persistent_workers=True, persistent_workers=True,
drop_last=False, drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False), sampler=dict(type='DefaultSampler', shuffle=False),

View File

@ -0,0 +1,30 @@
dictionary = dict(
type='Dictionary',
dict_file='dicts/english_digits_symbols.txt',
with_padding=True,
with_unknown=True,
same_start_end=True,
with_start=True,
with_end=True)
model = dict(
type='NRTR',
backbone=dict(
type='ResNet31OCR',
layers=[1, 2, 5, 3],
channels=[32, 64, 128, 256, 512, 512],
stage4_pool_cfg=dict(kernel_size=(2, 1), stride=(2, 1)),
last_stage_pool=True),
encoder=dict(type='NRTREncoder'),
decoder=dict(
type='NRTRDecoder',
module_loss=dict(
type='CEModuleLoss', ignore_first_char=True, flatten=True),
postprocessor=dict(type='AttentionPostprocessor'),
dictionary=dictionary,
max_seq_len=30,
),
data_preprocessor=dict(
type='TextRecogDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375]))

View File

@ -1,5 +1,5 @@
_base_ = [ _base_ = [
'../../_base_/recog_datasets/ST_MJ_train.py', 'nrtr_r31.py', '../../_base_/recog_datasets/ST_MJ_train.py',
'../../_base_/recog_datasets/academic_test.py', '../../_base_/recog_datasets/academic_test.py',
'../../_base_/default_runtime.py', '../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_6e.py' '../../_base_/schedules/schedule_adam_step_6e.py'
@ -13,34 +13,6 @@ test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk') file_client_args = dict(backend='disk')
default_hooks = dict(logger=dict(type='LoggerHook', interval=100)) default_hooks = dict(logger=dict(type='LoggerHook', interval=100))
dictionary = dict(
type='Dictionary',
dict_file='dicts/english_digits_symbols.txt',
with_padding=True,
with_unknown=True,
same_start_end=True,
with_start=True,
with_end=True)
model = dict(
type='NRTR',
backbone=dict(
type='ResNet31OCR',
layers=[1, 2, 5, 3],
channels=[32, 64, 128, 256, 512, 512],
stage4_pool_cfg=dict(kernel_size=(2, 1), stride=(2, 1)),
last_stage_pool=True),
encoder=dict(type='NRTREncoder'),
decoder=dict(
type='NRTRDecoder',
module_loss=dict(
type='CEModuleLoss', ignore_first_char=True, flatten=True),
postprocessor=dict(type='AttentionPostprocessor')),
dictionary=dictionary,
max_seq_len=30,
preprocess_cfg=dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]))
train_pipeline = [ train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='LoadOCRAnnotations', with_text=True), dict(type='LoadOCRAnnotations', with_text=True),
@ -72,8 +44,8 @@ test_pipeline = [
] ]
train_dataloader = dict( train_dataloader = dict(
batch_size=256, batch_size=384,
num_workers=2, num_workers=32,
persistent_workers=True, persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True), sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict( dataset=dict(
@ -81,7 +53,7 @@ train_dataloader = dict(
val_dataloader = dict( val_dataloader = dict(
batch_size=128, batch_size=128,
num_workers=2, num_workers=4,
persistent_workers=True, persistent_workers=True,
drop_last=False, drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False), sampler=dict(type='DefaultSampler', shuffle=False),

View File

@ -1,5 +1,5 @@
_base_ = [ _base_ = [
'../../_base_/recog_datasets/ST_MJ_train.py', 'nrtr_r31.py', '../../_base_/recog_datasets/ST_MJ_train.py',
'../../_base_/recog_datasets/academic_test.py', '../../_base_/recog_datasets/academic_test.py',
'../../_base_/default_runtime.py', '../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_6e.py' '../../_base_/schedules/schedule_adam_step_6e.py'
@ -14,33 +14,7 @@ test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk') file_client_args = dict(backend='disk')
default_hooks = dict(logger=dict(type='LoggerHook', interval=100)) default_hooks = dict(logger=dict(type='LoggerHook', interval=100))
dictionary = dict( model = dict(backbone=dict(last_stage_pool=False))
type='Dictionary',
dict_file='dicts/english_digits_symbols.txt',
with_padding=True,
with_unknown=True,
same_start_end=True,
with_start=True,
with_end=True)
model = dict(
type='NRTR',
backbone=dict(
type='ResNet31OCR',
layers=[1, 2, 5, 3],
channels=[32, 64, 128, 256, 512, 512],
stage4_pool_cfg=dict(kernel_size=(2, 1), stride=(2, 1)),
last_stage_pool=False),
encoder=dict(type='NRTREncoder'),
decoder=dict(
type='NRTRDecoder',
module_loss=dict(
type='CEModuleLoss', ignore_first_char=True, flatten=True),
postprocessor=dict(type='AttentionPostprocessor')),
dictionary=dictionary,
max_seq_len=30,
preprocess_cfg=dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]))
train_pipeline = [ train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadImageFromFile', file_client_args=file_client_args),
@ -73,8 +47,8 @@ test_pipeline = [
] ]
train_dataloader = dict( train_dataloader = dict(
batch_size=256, batch_size=384,
num_workers=2, num_workers=32,
persistent_workers=True, persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True), sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict( dataset=dict(
@ -82,7 +56,7 @@ train_dataloader = dict(
val_dataloader = dict( val_dataloader = dict(
batch_size=128, batch_size=128,
num_workers=2, num_workers=4,
persistent_workers=True, persistent_workers=True,
drop_last=False, drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False), sampler=dict(type='DefaultSampler', shuffle=False),

View File

Before

Width:  |  Height:  |  Size: 4.1 KiB

After

Width:  |  Height:  |  Size: 4.1 KiB

View File

Before

Width:  |  Height:  |  Size: 4.6 KiB

After

Width:  |  Height:  |  Size: 4.6 KiB

View File

Before

Width:  |  Height:  |  Size: 2.6 KiB

After

Width:  |  Height:  |  Size: 2.6 KiB

View File

Before

Width:  |  Height:  |  Size: 1.3 KiB

After

Width:  |  Height:  |  Size: 1.3 KiB

View File

Before

Width:  |  Height:  |  Size: 1.6 KiB

After

Width:  |  Height:  |  Size: 1.6 KiB

View File

Before

Width:  |  Height:  |  Size: 1.8 KiB

After

Width:  |  Height:  |  Size: 1.8 KiB

View File

Before

Width:  |  Height:  |  Size: 2.0 KiB

After

Width:  |  Height:  |  Size: 2.0 KiB

View File

Before

Width:  |  Height:  |  Size: 1.4 KiB

After

Width:  |  Height:  |  Size: 1.4 KiB

View File

Before

Width:  |  Height:  |  Size: 1.3 KiB

After

Width:  |  Height:  |  Size: 1.3 KiB

View File

Before

Width:  |  Height:  |  Size: 1.2 KiB

After

Width:  |  Height:  |  Size: 1.2 KiB

View File

@ -28,7 +28,7 @@ class TestRecogLMDBDataset(TestCase):
# test initialization # test initialization
dataset = RecogLMDBDataset( dataset = RecogLMDBDataset(
ann_file='tests/data/recog_toy_dataset/label.lmdb', ann_file='tests/data/rec_toy_dataset/label.lmdb',
data_prefix=dict(img_path='imgs'), data_prefix=dict(img_path='imgs'),
pipeline=[]) pipeline=[])
dataset.full_init() dataset.full_init()
@ -44,7 +44,7 @@ class TestRecogLMDBDataset(TestCase):
# test initialization # test initialization
dataset = RecogLMDBDataset( dataset = RecogLMDBDataset(
ann_file='tests/data/recog_toy_dataset/imgs.lmdb', ann_file='tests/data/rec_toy_dataset/imgs.lmdb',
data_prefix=dict(img_path='imgs'), data_prefix=dict(img_path='imgs'),
pipeline=[]) pipeline=[])
dataset.full_init() dataset.full_init()

View File

@ -10,7 +10,7 @@ class TestRecogTextDataset(TestCase):
# test initialization # test initialization
dataset = RecogTextDataset( dataset = RecogTextDataset(
ann_file='tests/data/recog_toy_dataset/old_label.txt', ann_file='tests/data/rec_toy_dataset/old_label.txt',
data_prefix=dict(img_path='imgs'), data_prefix=dict(img_path='imgs'),
parser_cfg=dict( parser_cfg=dict(
type='LineStrParser', type='LineStrParser',
@ -30,7 +30,7 @@ class TestRecogTextDataset(TestCase):
def test_jsonl_dataset(self): def test_jsonl_dataset(self):
dataset = RecogTextDataset( dataset = RecogTextDataset(
ann_file='tests/data/recog_toy_dataset/old_label.jsonl', ann_file='tests/data/rec_toy_dataset/old_label.jsonl',
data_prefix=dict(img_path='imgs'), data_prefix=dict(img_path='imgs'),
parser_cfg=dict(type='LineJsonParser', keys=['filename', 'text']), parser_cfg=dict(type='LineJsonParser', keys=['filename', 'text']),
pipeline=[]) pipeline=[])

View File

@ -142,12 +142,12 @@ class TestLoadImageFromLMDB(TestCase):
def setUp(self): def setUp(self):
img_key = 'image-%09d' % 1 img_key = 'image-%09d' % 1
self.results1 = { self.results1 = {
'img_path': f'tests/data/recog_toy_dataset/imgs.lmdb/{img_key}' 'img_path': f'tests/data/rec_toy_dataset/imgs.lmdb/{img_key}'
} }
img_key = 'image-%09d' % 100 img_key = 'image-%09d' % 100
self.results2 = { self.results2 = {
'img_path': f'tests/data/recog_toy_dataset/imgs.lmdb/{img_key}' 'img_path': f'tests/data/rec_toy_dataset/imgs.lmdb/{img_key}'
} }
def test_transform(self): def test_transform(self):