mirror of
https://github.com/open-mmlab/mmocr.git
synced 2025-06-03 21:54:47 +08:00
[Feature] Add ILST Converter (#833)
* [Feature] Add ILST Converter * [fix] typo * add docs and remove latin * add docs and remove latin * fix bug * fix bugs and docs * fix bugs * add annotation format in load_xml_file and change test_ratio to val_ratio * bug fix * fix docstring * chane _ to - * add ignores to store filtered vertical instances * update doc * update doc * using crops instead of dst_imgs * fix typos and remove test with val * fix docstring * update doc * fix padding size * update doc * simplify bash * update doc * update doc * remove tree * update tree structure * add - before after * add optional * add tab before bash * set val-ratio to 0. * Update docs/en/datasets/det.md * fix lint * fix lint * revert docs Co-authored-by: Tong Gao <gaotongxiao@gmail.com>
This commit is contained in:
parent
b68afca2d4
commit
e780563ed7
205
tools/data/textdet/ilst_converter.py
Normal file
205
tools/data/textdet/ilst_converter.py
Normal file
@ -0,0 +1,205 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import os
|
||||
import os.path as osp
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
import mmcv
|
||||
|
||||
from mmocr.utils import convert_annotations
|
||||
|
||||
|
||||
def collect_files(img_dir, gt_dir):
|
||||
"""Collect all images and their corresponding groundtruth files.
|
||||
|
||||
Args:
|
||||
img_dir (str): The image directory
|
||||
gt_dir (str): The groundtruth directory
|
||||
|
||||
Returns:
|
||||
files (list): The list of tuples (img_file, groundtruth_file)
|
||||
"""
|
||||
assert isinstance(img_dir, str)
|
||||
assert img_dir
|
||||
assert isinstance(gt_dir, str)
|
||||
assert gt_dir
|
||||
|
||||
ann_list, imgs_list = [], []
|
||||
for img_file in os.listdir(img_dir):
|
||||
ann_path = osp.join(gt_dir, img_file.split('.')[0] + '.xml')
|
||||
if os.path.exists(ann_path):
|
||||
ann_list.append(ann_path)
|
||||
imgs_list.append(osp.join(img_dir, img_file))
|
||||
|
||||
files = list(zip(imgs_list, ann_list))
|
||||
assert len(files), f'No images found in {img_dir}'
|
||||
print(f'Loaded {len(files)} images from {img_dir}')
|
||||
|
||||
return files
|
||||
|
||||
|
||||
def collect_annotations(files, nproc=1):
|
||||
"""Collect the annotation information.
|
||||
|
||||
Args:
|
||||
files (list): The list of tuples (image_file, groundtruth_file)
|
||||
nproc (int): The number of process to collect annotations
|
||||
|
||||
Returns:
|
||||
images (list): The list of image information dicts
|
||||
"""
|
||||
assert isinstance(files, list)
|
||||
assert isinstance(nproc, int)
|
||||
|
||||
if nproc > 1:
|
||||
images = mmcv.track_parallel_progress(
|
||||
load_img_info, files, nproc=nproc)
|
||||
else:
|
||||
images = mmcv.track_progress(load_img_info, files)
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def load_img_info(files):
|
||||
"""Load the information of one image.
|
||||
|
||||
Args:
|
||||
files (tuple): The tuple of (img_file, groundtruth_file)
|
||||
|
||||
Returns:
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
"""
|
||||
assert isinstance(files, tuple)
|
||||
|
||||
img_file, gt_file = files
|
||||
assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split(
|
||||
'.')[0]
|
||||
# read imgs while ignoring orientations
|
||||
img = mmcv.imread(img_file, 'unchanged')
|
||||
|
||||
try:
|
||||
img_info = dict(
|
||||
file_name=osp.join(osp.basename(img_file)),
|
||||
height=img.shape[0],
|
||||
width=img.shape[1],
|
||||
segm_file=osp.join(osp.basename(gt_file)))
|
||||
except AttributeError:
|
||||
print(f'Skip broken img {img_file}')
|
||||
return None
|
||||
|
||||
if osp.splitext(gt_file)[1] == '.xml':
|
||||
img_info = load_xml_info(gt_file, img_info)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
return img_info
|
||||
|
||||
|
||||
def load_xml_info(gt_file, img_info):
|
||||
"""Collect the annotation information.
|
||||
|
||||
The annotation format is as the following:
|
||||
<annotations>
|
||||
...
|
||||
<object>
|
||||
<name>SMT</name>
|
||||
<pose>Unspecified</pose>
|
||||
<truncated>0</truncated>
|
||||
<difficult>0</difficult>
|
||||
<bndbox>
|
||||
<xmin>157</xmin>
|
||||
<ymin>294</ymin>
|
||||
<xmax>237</xmax>
|
||||
<ymax>357</ymax>
|
||||
</bndbox>
|
||||
<object>
|
||||
|
||||
Args:
|
||||
gt_file (str): The path to ground-truth
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
|
||||
Returns:
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
"""
|
||||
obj = ET.parse(gt_file)
|
||||
root = obj.getroot()
|
||||
anno_info = []
|
||||
for object in root.iter('object'):
|
||||
word = object.find('name').text
|
||||
iscrowd = 1 if len(word) == 0 else 0
|
||||
x1 = int(object.find('bndbox').find('xmin').text)
|
||||
y1 = int(object.find('bndbox').find('ymin').text)
|
||||
x2 = int(object.find('bndbox').find('xmax').text)
|
||||
y2 = int(object.find('bndbox').find('ymax').text)
|
||||
|
||||
x = max(0, min(x1, x2))
|
||||
y = max(0, min(y1, y2))
|
||||
w, h = abs(x2 - x1), abs(y2 - y1)
|
||||
bbox = [x1, y1, w, h]
|
||||
segmentation = [x, y, x + w, y, x + w, y + h, x, y + h]
|
||||
anno = dict(
|
||||
iscrowd=iscrowd,
|
||||
category_id=1,
|
||||
bbox=bbox,
|
||||
area=w * h,
|
||||
segmentation=[segmentation])
|
||||
anno_info.append(anno)
|
||||
|
||||
img_info.update(anno_info=anno_info)
|
||||
|
||||
return img_info
|
||||
|
||||
|
||||
def split_train_val_list(full_list, val_ratio):
|
||||
"""Split list by val_ratio.
|
||||
|
||||
Args:
|
||||
full_list (list): List to be splited
|
||||
val_ratio (float): Split ratio for val set
|
||||
|
||||
return:
|
||||
list(list, list): Train_list and val_list
|
||||
"""
|
||||
|
||||
n_total = len(full_list)
|
||||
offset = int(n_total * val_ratio)
|
||||
if n_total == 0 or offset < 1:
|
||||
return [], full_list
|
||||
val_list = full_list[:offset]
|
||||
train_list = full_list[offset:]
|
||||
return [train_list, val_list]
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Generate training and val set of ILST ')
|
||||
parser.add_argument('root_path', help='Root dir path of ILST')
|
||||
parser.add_argument(
|
||||
'--val-ratio', help='Split ratio for val set', default=0., type=float)
|
||||
parser.add_argument(
|
||||
'--nproc', default=1, type=int, help='Number of processes')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
root_path = args.root_path
|
||||
with mmcv.Timer(print_tmpl='It takes {}s to convert ILST annotation'):
|
||||
files = collect_files(
|
||||
osp.join(root_path, 'imgs'), osp.join(root_path, 'annotations'))
|
||||
image_infos = collect_annotations(files, nproc=args.nproc)
|
||||
if args.val_ratio:
|
||||
image_infos = split_train_val_list(image_infos, args.val_ratio)
|
||||
splits = ['training', 'val']
|
||||
else:
|
||||
image_infos = [image_infos]
|
||||
splits = ['training']
|
||||
for i, split in enumerate(splits):
|
||||
convert_annotations(
|
||||
list(filter(None, image_infos[i])),
|
||||
osp.join(root_path, 'instances_' + split + '.json'))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
270
tools/data/textrecog/ilst_converter.py
Normal file
270
tools/data/textrecog/ilst_converter.py
Normal file
@ -0,0 +1,270 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import os.path as osp
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
import mmcv
|
||||
|
||||
from mmocr.datasets.pipelines.crop import crop_img
|
||||
from mmocr.utils.fileio import list_to_file
|
||||
|
||||
|
||||
def collect_files(img_dir, gt_dir):
|
||||
"""Collect all images and their corresponding groundtruth files.
|
||||
|
||||
Args:
|
||||
img_dir (str): The image directory
|
||||
gt_dir (str): The groundtruth directory
|
||||
|
||||
Returns:
|
||||
files (list): The list of tuples (img_file, groundtruth_file)
|
||||
"""
|
||||
assert isinstance(img_dir, str)
|
||||
assert img_dir
|
||||
assert isinstance(gt_dir, str)
|
||||
assert gt_dir
|
||||
|
||||
ann_list, imgs_list = [], []
|
||||
for img_file in os.listdir(img_dir):
|
||||
ann_path = osp.join(gt_dir, img_file.split('.')[0] + '.xml')
|
||||
if os.path.exists(ann_path):
|
||||
ann_list.append(ann_path)
|
||||
imgs_list.append(osp.join(img_dir, img_file))
|
||||
|
||||
files = list(zip(imgs_list, ann_list))
|
||||
assert len(files), f'No images found in {img_dir}'
|
||||
print(f'Loaded {len(files)} images from {img_dir}')
|
||||
|
||||
return files
|
||||
|
||||
|
||||
def collect_annotations(files, nproc=1):
|
||||
"""Collect the annotation information.
|
||||
|
||||
Args:
|
||||
files (list): The list of tuples (image_file, groundtruth_file)
|
||||
nproc (int): The number of process to collect annotations
|
||||
|
||||
Returns:
|
||||
images (list): The list of image information dicts
|
||||
"""
|
||||
assert isinstance(files, list)
|
||||
assert isinstance(nproc, int)
|
||||
|
||||
if nproc > 1:
|
||||
images = mmcv.track_parallel_progress(
|
||||
load_img_info, files, nproc=nproc)
|
||||
else:
|
||||
images = mmcv.track_progress(load_img_info, files)
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def load_img_info(files):
|
||||
"""Load the information of one image.
|
||||
|
||||
Args:
|
||||
files (tuple): The tuple of (img_file, groundtruth_file)
|
||||
|
||||
Returns:
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
"""
|
||||
assert isinstance(files, tuple)
|
||||
|
||||
img_file, gt_file = files
|
||||
assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split(
|
||||
'.')[0]
|
||||
# read imgs while ignoring orientations
|
||||
img = mmcv.imread(img_file, 'unchanged')
|
||||
|
||||
try:
|
||||
img_info = dict(
|
||||
file_name=osp.join(osp.basename(img_file)),
|
||||
height=img.shape[0],
|
||||
width=img.shape[1],
|
||||
segm_file=osp.join(osp.basename(gt_file)))
|
||||
except AttributeError:
|
||||
print(f'Skip broken img {img_file}')
|
||||
return None
|
||||
|
||||
if osp.splitext(gt_file)[1] == '.xml':
|
||||
img_info = load_xml_info(gt_file, img_info)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
return img_info
|
||||
|
||||
|
||||
def load_xml_info(gt_file, img_info):
|
||||
"""Collect the annotation information.
|
||||
|
||||
The annotation format is as the following:
|
||||
<annotations>
|
||||
...
|
||||
<object>
|
||||
<name>SMT</name>
|
||||
<pose>Unspecified</pose>
|
||||
<truncated>0</truncated>
|
||||
<difficult>0</difficult>
|
||||
<bndbox>
|
||||
<xmin>157</xmin>
|
||||
<ymin>294</ymin>
|
||||
<xmax>237</xmax>
|
||||
<ymax>357</ymax>
|
||||
</bndbox>
|
||||
<object>
|
||||
|
||||
Args:
|
||||
gt_file (str): The path to ground-truth
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
|
||||
Returns:
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
"""
|
||||
obj = ET.parse(gt_file)
|
||||
root = obj.getroot()
|
||||
anno_info = []
|
||||
for object in root.iter('object'):
|
||||
word = object.find('name').text
|
||||
x1 = int(object.find('bndbox').find('xmin').text)
|
||||
y1 = int(object.find('bndbox').find('ymin').text)
|
||||
x2 = int(object.find('bndbox').find('xmax').text)
|
||||
y2 = int(object.find('bndbox').find('ymax').text)
|
||||
|
||||
x = max(0, min(x1, x2))
|
||||
y = max(0, min(y1, y2))
|
||||
w, h = abs(x2 - x1), abs(y2 - y1)
|
||||
bbox = [x, y, x + w, y, x + w, y + h, x, y + h]
|
||||
anno = dict(bbox=bbox, word=word)
|
||||
anno_info.append(anno)
|
||||
|
||||
img_info.update(anno_info=anno_info)
|
||||
|
||||
return img_info
|
||||
|
||||
|
||||
def split_train_val_list(full_list, val_ratio):
|
||||
"""Split list by val_ratio.
|
||||
|
||||
Args:
|
||||
full_list (list): List to be splited
|
||||
val_ratio (float): Split ratio for val set
|
||||
|
||||
return:
|
||||
list(list, list): Train_list and val_list
|
||||
"""
|
||||
n_total = len(full_list)
|
||||
offset = int(n_total * val_ratio)
|
||||
if n_total == 0 or offset < 1:
|
||||
return [], full_list
|
||||
val_list = full_list[:offset]
|
||||
train_list = full_list[offset:]
|
||||
return [train_list, val_list]
|
||||
|
||||
|
||||
def generate_ann(root_path, image_infos, preserve_vertical, val_ratio, format):
|
||||
"""Generate cropped annotations and label txt file.
|
||||
|
||||
Args:
|
||||
root_path (str): The root path of the dataset
|
||||
split (str): The split of dataset. Namely: training or test
|
||||
image_infos (list[dict]): A list of dicts of the img and
|
||||
annotation information
|
||||
preserve_vertical (bool): Whether to preserve vertical texts
|
||||
val_ratio (float): Split ratio for val set
|
||||
format (str): Using jsonl(dict) or str to format annotations
|
||||
"""
|
||||
|
||||
assert val_ratio <= 1.
|
||||
|
||||
if val_ratio:
|
||||
image_infos = split_train_val_list(image_infos, val_ratio)
|
||||
splits = ['training', 'val']
|
||||
|
||||
else:
|
||||
image_infos = [image_infos]
|
||||
splits = ['training']
|
||||
|
||||
for i, split in enumerate(splits):
|
||||
dst_image_root = osp.join(root_path, 'crops', split)
|
||||
ignore_image_root = osp.join(root_path, 'ignores', split)
|
||||
dst_label_file = osp.join(root_path, f'{split}_label.{format}')
|
||||
os.makedirs(dst_image_root, exist_ok=True)
|
||||
|
||||
lines = []
|
||||
for image_info in image_infos[i]:
|
||||
index = 1
|
||||
src_img_path = osp.join(root_path, 'imgs', image_info['file_name'])
|
||||
image = mmcv.imread(src_img_path)
|
||||
src_img_root = image_info['file_name'].split('.')[0]
|
||||
|
||||
for anno in image_info['anno_info']:
|
||||
word = anno['word']
|
||||
dst_img = crop_img(image, anno['bbox'], 0, 0)
|
||||
h, w, _ = dst_img.shape
|
||||
|
||||
dst_img_name = f'{src_img_root}_{index}.png'
|
||||
index += 1
|
||||
# Skip invalid annotations
|
||||
if min(dst_img.shape) == 0:
|
||||
continue
|
||||
# Skip vertical texts
|
||||
if not preserve_vertical and h / w > 2 and split == 'training':
|
||||
dst_img_path = osp.join(ignore_image_root, dst_img_name)
|
||||
else:
|
||||
dst_img_path = osp.join(dst_image_root, dst_img_name)
|
||||
mmcv.imwrite(dst_img, dst_img_path)
|
||||
filename = f'{osp.basename(dst_image_root)}/{dst_img_name}'
|
||||
if format == 'txt':
|
||||
lines.append(f'{filename} ' f'{word}')
|
||||
elif format == 'jsonl':
|
||||
|
||||
lines.append(
|
||||
json.dumps({
|
||||
'filename': filename,
|
||||
'text': word
|
||||
},
|
||||
ensure_ascii=False))
|
||||
else:
|
||||
raise NotImplementedError
|
||||
list_to_file(dst_label_file, lines)
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Generate training and val set of ILST ')
|
||||
parser.add_argument('root_path', help='Root dir path of ILST')
|
||||
parser.add_argument(
|
||||
'--preserve-vertical',
|
||||
help='Preserve samples containing vertical texts',
|
||||
action='store_true')
|
||||
parser.add_argument(
|
||||
'--val-ratio', help='Split ratio for val set', default=0., type=float)
|
||||
parser.add_argument(
|
||||
'--nproc', default=1, type=int, help='Number of processes')
|
||||
parser.add_argument(
|
||||
'--format',
|
||||
default='jsonl',
|
||||
help='Use jsonl or string to format annotations',
|
||||
choices=['jsonl', 'txt'])
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
root_path = args.root_path
|
||||
with mmcv.Timer(print_tmpl='It takes {}s to convert ILST annotation'):
|
||||
files = collect_files(
|
||||
osp.join(root_path, 'imgs'), osp.join(root_path, 'annotations'))
|
||||
image_infos = collect_annotations(files, nproc=args.nproc)
|
||||
# filter broken images
|
||||
image_infos = list(filter(None, image_infos))
|
||||
generate_ann(root_path, image_infos, args.preserve_vertical,
|
||||
args.val_ratio, args.format)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user