mirror of
https://github.com/open-mmlab/mmocr.git
synced 2025-06-03 21:54:47 +08:00
[Feature] Add MTWI Data Converter (#867)
This commit is contained in:
parent
4ab411e84c
commit
ec7b8420bf
201
tools/data/textdet/mtwi_converter.py
Normal file
201
tools/data/textdet/mtwi_converter.py
Normal file
@ -0,0 +1,201 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import math
|
||||
import os
|
||||
import os.path as osp
|
||||
|
||||
import cv2
|
||||
import mmcv
|
||||
from PIL import Image
|
||||
|
||||
from mmocr.utils import convert_annotations
|
||||
|
||||
|
||||
def collect_files(img_dir, gt_dir, ratio):
|
||||
"""Collect all images and their corresponding groundtruth files.
|
||||
Args:
|
||||
img_dir (str): The image directory
|
||||
gt_dir (str): The groundtruth directory
|
||||
ratio (float): Split ratio for val set
|
||||
|
||||
Returns:
|
||||
files (list): The list of tuples (img_file, groundtruth_file)
|
||||
"""
|
||||
assert isinstance(img_dir, str)
|
||||
assert img_dir
|
||||
assert isinstance(gt_dir, str)
|
||||
assert gt_dir
|
||||
assert isinstance(ratio, float)
|
||||
assert ratio < 1.0, 'val_ratio should be a float between 0.0 to 1.0'
|
||||
|
||||
ann_list, imgs_list = [], []
|
||||
for ann_file in os.listdir(gt_dir):
|
||||
img_file = osp.join(img_dir, ann_file.replace('txt', 'jpg'))
|
||||
# This dataset contains some images obtained from .gif,
|
||||
# which cannot be loaded by mmcv.imread(), convert them
|
||||
# to RGB mode.
|
||||
try:
|
||||
if mmcv.imread(img_file) is None:
|
||||
print(f'Convert {img_file} to RGB mode.')
|
||||
img = Image.open(img_file)
|
||||
img = img.convert('RGB')
|
||||
img.save(img_file)
|
||||
except cv2.error:
|
||||
print(f'Skip broken img {img_file}')
|
||||
continue
|
||||
|
||||
ann_list.append(osp.join(gt_dir, ann_file))
|
||||
imgs_list.append(img_file)
|
||||
|
||||
all_files = list(zip(imgs_list, ann_list))
|
||||
assert len(all_files), f'No images found in {img_dir}'
|
||||
print(f'Loaded {len(all_files)} images from {img_dir}')
|
||||
|
||||
trn_files, val_files = [], []
|
||||
if ratio > 0:
|
||||
for i, file in enumerate(all_files):
|
||||
if i % math.floor(1 / ratio):
|
||||
trn_files.append(file)
|
||||
else:
|
||||
val_files.append(file)
|
||||
else:
|
||||
trn_files, val_files = all_files, []
|
||||
|
||||
print(f'training #{len(trn_files)}, val #{len(val_files)}')
|
||||
|
||||
return trn_files, val_files
|
||||
|
||||
|
||||
def collect_annotations(files, nproc=1):
|
||||
"""Collect the annotation information.
|
||||
Args:
|
||||
files (list): The list of tuples (image_file, groundtruth_file)
|
||||
nproc (int): The number of process to collect annotations
|
||||
|
||||
Returns:
|
||||
images (list): The list of image information dicts
|
||||
"""
|
||||
assert isinstance(files, list)
|
||||
assert isinstance(nproc, int)
|
||||
|
||||
if nproc > 1:
|
||||
images = mmcv.track_parallel_progress(
|
||||
load_img_info, files, nproc=nproc)
|
||||
else:
|
||||
images = mmcv.track_progress(load_img_info, files)
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def load_img_info(files):
|
||||
"""Load the information of one image.
|
||||
Args:
|
||||
files (tuple): The tuple of (img_file, groundtruth_file)
|
||||
|
||||
Returns:
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
"""
|
||||
assert isinstance(files, tuple)
|
||||
|
||||
img_file, gt_file = files
|
||||
assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split(
|
||||
'.')[0]
|
||||
# read imgs while ignoring orientations
|
||||
img = mmcv.imread(img_file)
|
||||
|
||||
img_info = dict(
|
||||
file_name=osp.join(osp.basename(img_file)),
|
||||
height=img.shape[0],
|
||||
width=img.shape[1],
|
||||
segm_file=osp.join(osp.basename(gt_file)))
|
||||
|
||||
if osp.splitext(gt_file)[1] == '.txt':
|
||||
img_info = load_txt_info(gt_file, img_info)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
return img_info
|
||||
|
||||
|
||||
def load_txt_info(gt_file, img_info):
|
||||
"""Collect the annotation information.
|
||||
|
||||
The annotation format is as the following:
|
||||
x1,y1,x2,y2,x3,y3,x4,y4,text
|
||||
|
||||
45.45,226.83,11.87,181.79,183.84,13.1,233.79,49.95,时尚袋袋
|
||||
345.98,311.18,345.98,347.21,462.26,347.21,462.26,311.18,73774
|
||||
462.26,292.34,461.44,299.71,502.39,299.71,502.39,292.34,73/74/737
|
||||
|
||||
Args:
|
||||
gt_file (str): The path to ground-truth
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
|
||||
Returns:
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
"""
|
||||
|
||||
anno_info = []
|
||||
with open(gt_file, 'r') as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
points = line.split(',')[0:8]
|
||||
word = line.split(',')[8].rstrip('\n')
|
||||
segmentation = [math.floor(float(pt)) for pt in points]
|
||||
x = max(0, min(segmentation[0::2]))
|
||||
y = max(0, min(segmentation[1::2]))
|
||||
w = abs(max(segmentation[0::2]) - x)
|
||||
h = abs(max(segmentation[1::2]) - y)
|
||||
bbox = [x, y, w, h]
|
||||
|
||||
anno = dict(
|
||||
iscrowd=1 if word == '###' else 0,
|
||||
category_id=1,
|
||||
bbox=bbox,
|
||||
area=w * h,
|
||||
segmentation=[segmentation])
|
||||
anno_info.append(anno)
|
||||
|
||||
img_info.update(anno_info=anno_info)
|
||||
|
||||
return img_info
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Generate training and val set of MTWI.')
|
||||
parser.add_argument('root_path', help='Root dir path of MTWI')
|
||||
parser.add_argument(
|
||||
'--val-ratio', help='Split ratio for val set', default=0.0, type=float)
|
||||
parser.add_argument(
|
||||
'--nproc', default=1, type=int, help='Number of process')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
root_path = args.root_path
|
||||
ratio = args.val_ratio
|
||||
|
||||
trn_files, val_files = collect_files(
|
||||
osp.join(root_path, 'imgs'), osp.join(root_path, 'annotations'), ratio)
|
||||
|
||||
# Train set
|
||||
trn_infos = collect_annotations(trn_files, nproc=args.nproc)
|
||||
with mmcv.Timer(
|
||||
print_tmpl='It takes {}s to convert MTWI Training annotation'):
|
||||
convert_annotations(trn_infos,
|
||||
osp.join(root_path, 'instances_training.json'))
|
||||
|
||||
# Val set
|
||||
if len(val_files) > 0:
|
||||
val_infos = collect_annotations(val_files, nproc=args.nproc)
|
||||
with mmcv.Timer(
|
||||
print_tmpl='It takes {}s to convert MTWI Val annotation'):
|
||||
convert_annotations(val_infos,
|
||||
osp.join(root_path, 'instances_val.json'))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
266
tools/data/textrecog/mtwi_converter.py
Normal file
266
tools/data/textrecog/mtwi_converter.py
Normal file
@ -0,0 +1,266 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import json
|
||||
import math
|
||||
import os
|
||||
import os.path as osp
|
||||
|
||||
import cv2
|
||||
import mmcv
|
||||
from PIL import Image
|
||||
|
||||
from mmocr.datasets.pipelines.crop import crop_img
|
||||
from mmocr.utils.fileio import list_to_file
|
||||
|
||||
|
||||
def collect_files(img_dir, gt_dir, ratio):
|
||||
"""Collect all images and their corresponding groundtruth files.
|
||||
Args:
|
||||
img_dir (str): The image directory
|
||||
gt_dir (str): The groundtruth directory
|
||||
ratio (float): Split ratio for val set
|
||||
|
||||
Returns:
|
||||
files (list): The list of tuples (img_file, groundtruth_file)
|
||||
"""
|
||||
assert isinstance(img_dir, str)
|
||||
assert img_dir
|
||||
assert isinstance(gt_dir, str)
|
||||
assert gt_dir
|
||||
assert isinstance(ratio, float)
|
||||
assert ratio < 1.0, 'val_ratio should be a float between 0.0 to 1.0'
|
||||
|
||||
ann_list, imgs_list = [], []
|
||||
for ann_file in os.listdir(gt_dir):
|
||||
img_file = osp.join(img_dir, ann_file.replace('txt', 'jpg'))
|
||||
# This dataset contains some images obtained from .gif,
|
||||
# which cannot be loaded by mmcv.imread(), convert them
|
||||
# to RGB mode.
|
||||
try:
|
||||
if mmcv.imread(img_file) is None:
|
||||
print(f'Convert {img_file} to RGB mode.')
|
||||
img = Image.open(img_file)
|
||||
img = img.convert('RGB')
|
||||
img.save(img_file)
|
||||
except cv2.error:
|
||||
print(f'Skip broken img {img_file}')
|
||||
continue
|
||||
|
||||
ann_list.append(osp.join(gt_dir, ann_file))
|
||||
imgs_list.append(img_file)
|
||||
|
||||
all_files = list(zip(imgs_list, ann_list))
|
||||
assert len(all_files), f'No images found in {img_dir}'
|
||||
print(f'Loaded {len(all_files)} images from {img_dir}')
|
||||
|
||||
trn_files, val_files = [], []
|
||||
if ratio > 0:
|
||||
for i, file in enumerate(all_files):
|
||||
if i % math.floor(1 / ratio):
|
||||
trn_files.append(file)
|
||||
else:
|
||||
val_files.append(file)
|
||||
else:
|
||||
trn_files, val_files = all_files, []
|
||||
|
||||
print(f'training #{len(trn_files)}, val #{len(val_files)}')
|
||||
|
||||
return trn_files, val_files
|
||||
|
||||
|
||||
def collect_annotations(files, nproc=1):
|
||||
"""Collect the annotation information.
|
||||
Args:
|
||||
files (list): The list of tuples (image_file, groundtruth_file)
|
||||
nproc (int): The number of process to collect annotations
|
||||
|
||||
Returns:
|
||||
images (list): The list of image information dicts
|
||||
"""
|
||||
assert isinstance(files, list)
|
||||
assert isinstance(nproc, int)
|
||||
|
||||
if nproc > 1:
|
||||
images = mmcv.track_parallel_progress(
|
||||
load_img_info, files, nproc=nproc)
|
||||
else:
|
||||
images = mmcv.track_progress(load_img_info, files)
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def load_img_info(files):
|
||||
"""Load the information of one image.
|
||||
Args:
|
||||
files (tuple): The tuple of (img_file, groundtruth_file)
|
||||
|
||||
Returns:
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
"""
|
||||
assert isinstance(files, tuple)
|
||||
|
||||
img_file, gt_file = files
|
||||
assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split(
|
||||
'.')[0]
|
||||
# read imgs while ignoring orientations
|
||||
img = mmcv.imread(img_file)
|
||||
|
||||
img_info = dict(
|
||||
file_name=osp.join(osp.basename(img_file)),
|
||||
height=img.shape[0],
|
||||
width=img.shape[1],
|
||||
segm_file=osp.join(osp.basename(gt_file)))
|
||||
|
||||
if osp.splitext(gt_file)[1] == '.txt':
|
||||
img_info = load_txt_info(gt_file, img_info)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
return img_info
|
||||
|
||||
|
||||
def load_txt_info(gt_file, img_info):
|
||||
"""Collect the annotation information.
|
||||
|
||||
The annotation format is as the following:
|
||||
x1,y1,x2,y2,x3,y3,x4,y4,text
|
||||
|
||||
45.45,226.83,11.87,181.79,183.84,13.1,233.79,49.95,时尚袋袋
|
||||
345.98,311.18,345.98,347.21,462.26,347.21,462.26,311.18,73774
|
||||
462.26,292.34,461.44,299.71,502.39,299.71,502.39,292.34,73/74/737
|
||||
|
||||
Args:
|
||||
gt_file (str): The path to ground-truth
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
|
||||
Returns:
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
"""
|
||||
|
||||
anno_info = []
|
||||
with open(gt_file, 'r') as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
points = line.split(',')[0:8]
|
||||
word = line.split(',')[8].rstrip('\n')
|
||||
if word == '###':
|
||||
continue
|
||||
bbox = [math.floor(float(pt)) for pt in points]
|
||||
anno = dict(bbox=bbox, word=word)
|
||||
anno_info.append(anno)
|
||||
|
||||
img_info.update(anno_info=anno_info)
|
||||
|
||||
return img_info
|
||||
|
||||
|
||||
def generate_ann(root_path, split, image_infos, preserve_vertical, format):
|
||||
"""Generate cropped annotations and label txt file.
|
||||
|
||||
Args:
|
||||
root_path (str): The root path of the dataset
|
||||
split (str): The split of dataset. Namely: training or test
|
||||
image_infos (list[dict]): A list of dicts of the img and
|
||||
annotation information
|
||||
preserve_vertical (bool): Whether to preserve vertical texts
|
||||
format (str): Annotation format, whether be txt or jsonl
|
||||
"""
|
||||
print('Cropping images...')
|
||||
dst_image_root = osp.join(root_path, 'crops', split)
|
||||
ignore_image_root = osp.join(root_path, 'ignores', split)
|
||||
if split == 'training':
|
||||
dst_label_file = osp.join(root_path, f'train_label.{format}')
|
||||
elif split == 'val':
|
||||
dst_label_file = osp.join(root_path, f'val_label.{format}')
|
||||
mmcv.mkdir_or_exist(dst_image_root)
|
||||
mmcv.mkdir_or_exist(ignore_image_root)
|
||||
|
||||
lines = []
|
||||
for image_info in image_infos:
|
||||
index = 1
|
||||
src_img_path = osp.join(root_path, 'imgs', image_info['file_name'])
|
||||
image = mmcv.imread(src_img_path)
|
||||
src_img_root = image_info['file_name'].split('.')[0]
|
||||
|
||||
for anno in image_info['anno_info']:
|
||||
word = anno['word']
|
||||
dst_img = crop_img(image, anno['bbox'], 0, 0)
|
||||
h, w, _ = dst_img.shape
|
||||
|
||||
dst_img_name = f'{src_img_root}_{index}.png'
|
||||
index += 1
|
||||
# Skip invalid annotations
|
||||
if min(dst_img.shape) == 0:
|
||||
continue
|
||||
# Skip vertical texts
|
||||
if not preserve_vertical and h / w > 2 and split == 'training':
|
||||
dst_img_path = osp.join(ignore_image_root, dst_img_name)
|
||||
else:
|
||||
dst_img_path = osp.join(dst_image_root, dst_img_name)
|
||||
mmcv.imwrite(dst_img, dst_img_path)
|
||||
|
||||
if format == 'txt':
|
||||
lines.append(f'{osp.basename(dst_image_root)}/{dst_img_name} '
|
||||
f'{word}')
|
||||
elif format == 'jsonl':
|
||||
lines.append(
|
||||
json.dumps(
|
||||
{
|
||||
'filename':
|
||||
f'{osp.basename(dst_image_root)}/{dst_img_name}',
|
||||
'text': word
|
||||
},
|
||||
ensure_ascii=False))
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
list_to_file(dst_label_file, lines)
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Generate training and val set of MTWI.')
|
||||
parser.add_argument('root_path', help='Root dir path of MTWI')
|
||||
parser.add_argument(
|
||||
'--val-ratio', help='Split ratio for val set', default=0.0, type=float)
|
||||
parser.add_argument(
|
||||
'--preserve-vertical',
|
||||
help='Preserve samples containing vertical texts',
|
||||
action='store_true')
|
||||
parser.add_argument(
|
||||
'--format',
|
||||
default='jsonl',
|
||||
help='Use jsonl or string to format annotations',
|
||||
choices=['jsonl', 'txt'])
|
||||
parser.add_argument(
|
||||
'--nproc', default=1, type=int, help='Number of process')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
root_path = args.root_path
|
||||
ratio = args.val_ratio
|
||||
|
||||
trn_files, val_files = collect_files(
|
||||
osp.join(root_path, 'imgs'), osp.join(root_path, 'annotations'), ratio)
|
||||
|
||||
# Train set
|
||||
trn_infos = collect_annotations(trn_files, nproc=args.nproc)
|
||||
with mmcv.Timer(
|
||||
print_tmpl='It takes {}s to convert MTWI Training annotation'):
|
||||
generate_ann(root_path, 'training', trn_infos, args.preserve_vertical,
|
||||
args.format)
|
||||
|
||||
# Val set
|
||||
if len(val_files) > 0:
|
||||
val_infos = collect_annotations(val_files, nproc=args.nproc)
|
||||
with mmcv.Timer(
|
||||
print_tmpl='It takes {}s to convert MTWI Val annotation'):
|
||||
generate_ann(root_path, 'val', val_infos, args.preserve_vertical,
|
||||
args.format)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user