mirror of
https://github.com/open-mmlab/mmocr.git
synced 2025-06-03 21:54:47 +08:00
[Feature] Add DeText Converter (#818)
* add DeText Converter * Update tools/data/textrecog/detext_converter.py Co-authored-by: Tong Gao <gaotongxiao@gmail.com> * update doc; support jsonl; fix docstrings * update mkdir func * fix bug * update doc; do not filter for test val * move directory tree * fix indentation Co-authored-by: Tong Gao <gaotongxiao@gmail.com>
This commit is contained in:
parent
8b928cb500
commit
ee2c3cfd46
@ -59,6 +59,7 @@ The structure of the text detection dataset directory is organized as follows.
|
||||
| Totaltext | [homepage](https://github.com/cs-chan/Total-Text-Dataset) | - | - | - |
|
||||
| CurvedSynText150k | [homepage](https://github.com/aim-uofa/AdelaiDet/blob/master/datasets/README.md) \| [Part1](https://drive.google.com/file/d/1OSJ-zId2h3t_-I7g_wUkrK-VqQy153Kj/view?usp=sharing) \| [Part2](https://drive.google.com/file/d/1EzkcOlIgEp5wmEubvHb7-J5EImHExYgY/view?usp=sharing) | [instances_training.json](https://download.openmmlab.com/mmocr/data/curvedsyntext/instances_training.json) | - | - |
|
||||
| FUNSD | [homepage](https://guillaumejaume.github.io/FUNSD/) | - | - | - |
|
||||
| DeText | [homepage](https://rrc.cvc.uab.es/?ch=9) | - | - | - |
|
||||
| NAF | [homepage](https://github.com/herobd/NAF_dataset/releases/tag/v1.0) | - | - | - |
|
||||
| SROIE | [homepage](https://rrc.cvc.uab.es/?ch=13) | - | - | - |
|
||||
| Lecture Video DB | [homepage](https://cvit.iiit.ac.in/research/projects/cvit-projects/lecturevideodb) | - | - | - |
|
||||
@ -221,6 +222,43 @@ rm dataset.zip && rm -rf dataset
|
||||
python tools/data/textdet/funsd_converter.py PATH/TO/funsd --nproc 4
|
||||
```
|
||||
|
||||
### DeText
|
||||
|
||||
- Step1: Download `ch9_training_images.zip`, `ch9_training_localization_transcription_gt.zip`, `ch9_validation_images.zip`, and `ch9_validation_localization_transcription_gt.zip` from **Task 3: End to End** on the [homepage](https://rrc.cvc.uab.es/?ch=9).
|
||||
|
||||
```bash
|
||||
mkdir detext && cd detext
|
||||
mkdir imgs && mkdir annotations && mkdir imgs/training && mkdir imgs/val && mkdir annotations/training && mkdir annotations/val
|
||||
|
||||
# Download DeText
|
||||
wget https://rrc.cvc.uab.es/downloads/ch9_training_images.zip --no-check-certificate
|
||||
wget https://rrc.cvc.uab.es/downloads/ch9_training_localization_transcription_gt.zip --no-check-certificate
|
||||
wget https://rrc.cvc.uab.es/downloads/ch9_validation_images.zip --no-check-certificate
|
||||
wget https://rrc.cvc.uab.es/downloads/ch9_validation_localization_transcription_gt.zip --no-check-certificate
|
||||
|
||||
# Extract images and annotations
|
||||
unzip -q ch9_training_images.zip -d imgs/training && unzip -q ch9_training_localization_transcription_gt.zip -d annotations/training && unzip -q ch9_validation_images.zip -d imgs/val && unzip -q ch9_validation_localization_transcription_gt.zip -d annotations/val
|
||||
|
||||
# Remove zips
|
||||
rm ch9_training_images.zip && rm ch9_training_localization_transcription_gt.zip && rm ch9_validation_images.zip && rm ch9_validation_localization_transcription_gt.zip
|
||||
```
|
||||
|
||||
- Step2: Generate `instances_training.json` and `instances_val.json` with following command:
|
||||
|
||||
```bash
|
||||
python tools/data/textdet/detext_converter.py PATH/TO/detext --nproc 4
|
||||
```
|
||||
|
||||
- After running the above codes, the directory structure should be as follows:
|
||||
|
||||
```text
|
||||
|── detext
|
||||
| ├── annotations
|
||||
│ ├── imgs
|
||||
│ ├── instances_test.json
|
||||
│ └── instances_training.json
|
||||
```
|
||||
|
||||
### NAF
|
||||
|
||||
- Step1: Download [labeled_images.tar.gz](https://github.com/herobd/NAF_dataset/releases/tag/v1.0) to `naf/`.
|
||||
|
@ -103,6 +103,7 @@
|
||||
| Totaltext | [homepage](https://github.com/cs-chan/Total-Text-Dataset) | - | - | |
|
||||
| OpenVINO | [Open Images](https://github.com/cvdfoundation/open-images-dataset) | [annotations](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text) | [annotations](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text) | |
|
||||
| FUNSD | [homepage](https://guillaumejaume.github.io/FUNSD/) | - | - | |
|
||||
| DeText | [homepage](https://rrc.cvc.uab.es/?ch=9) | - | - | |
|
||||
| NAF | [homepage](https://github.com/herobd/NAF_dataset) | - | - | - |
|
||||
| SROIE | [homepage](https://rrc.cvc.uab.es/?ch=13) | - | - | - |
|
||||
| Lecture Video DB | [homepage](https://cvit.iiit.ac.in/research/projects/cvit-projects/lecturevideodb) | - | - | - |
|
||||
@ -329,6 +330,45 @@ rm dataset.zip && rm -rf dataset
|
||||
python tools/data/textrecog/funsd_converter.py PATH/TO/funsd --nproc 4
|
||||
```
|
||||
|
||||
### DeText
|
||||
|
||||
- Step1: Download `ch9_training_images.zip`, `ch9_training_localization_transcription_gt.zip`, `ch9_validation_images.zip`, and `ch9_validation_localization_transcription_gt.zip` from **Task 3: End to End** on the [homepage](https://rrc.cvc.uab.es/?ch=9).
|
||||
|
||||
```bash
|
||||
mkdir detext && cd detext
|
||||
mkdir imgs && mkdir annotations && mkdir imgs/training && mkdir imgs/val && mkdir annotations/training && mkdir annotations/val
|
||||
|
||||
# Download DeText
|
||||
wget https://rrc.cvc.uab.es/downloads/ch9_training_images.zip --no-check-certificate
|
||||
wget https://rrc.cvc.uab.es/downloads/ch9_training_localization_transcription_gt.zip --no-check-certificate
|
||||
wget https://rrc.cvc.uab.es/downloads/ch9_validation_images.zip --no-check-certificate
|
||||
wget https://rrc.cvc.uab.es/downloads/ch9_validation_localization_transcription_gt.zip --no-check-certificate
|
||||
|
||||
# Extract images and annotations
|
||||
unzip -q ch9_training_images.zip -d imgs/training && unzip -q ch9_training_localization_transcription_gt.zip -d annotations/training && unzip -q ch9_validation_images.zip -d imgs/val && unzip -q ch9_validation_localization_transcription_gt.zip -d annotations/val
|
||||
|
||||
# Remove zips
|
||||
rm ch9_training_images.zip && rm ch9_training_localization_transcription_gt.zip && rm ch9_validation_images.zip && rm ch9_validation_localization_transcription_gt.zip
|
||||
```
|
||||
|
||||
- Step2: Generate `instances_training.json` and `instances_val.json` with following command:
|
||||
|
||||
```bash
|
||||
# Add --preserve-vertical to preserve vertical texts for training, otherwise
|
||||
# vertical images will be filtered and stored in PATH/TO/detext/ignores
|
||||
python tools/data/textrecog/detext_converter.py PATH/TO/detext --nproc 4
|
||||
```
|
||||
|
||||
- After running the above codes, the directory structure should be as follows:
|
||||
|
||||
```text
|
||||
├── detext
|
||||
│ ├── crops
|
||||
│ ├── ignores
|
||||
│ ├── train_label.jsonl
|
||||
│ ├── test_label.jsonl
|
||||
```
|
||||
|
||||
### NAF
|
||||
|
||||
- Step1: Download [labeled_images.tar.gz](https://github.com/herobd/NAF_dataset/releases/tag/v1.0) to `naf/`.
|
||||
|
161
tools/data/textdet/detext_converter.py
Normal file
161
tools/data/textdet/detext_converter.py
Normal file
@ -0,0 +1,161 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import os
|
||||
import os.path as osp
|
||||
|
||||
import mmcv
|
||||
import numpy as np
|
||||
|
||||
from mmocr.utils import convert_annotations
|
||||
|
||||
|
||||
def collect_files(img_dir, gt_dir):
|
||||
"""Collect all images and their corresponding groundtruth files.
|
||||
|
||||
Args:
|
||||
img_dir (str): The image directory
|
||||
gt_dir (str): The groundtruth directory
|
||||
|
||||
Returns:
|
||||
files (list): The list of tuples (img_file, groundtruth_file)
|
||||
"""
|
||||
assert isinstance(img_dir, str)
|
||||
assert img_dir
|
||||
assert isinstance(gt_dir, str)
|
||||
assert gt_dir
|
||||
|
||||
ann_list, imgs_list = [], []
|
||||
for img in os.listdir(img_dir):
|
||||
imgs_list.append(osp.join(img_dir, img))
|
||||
ann_list.append(osp.join(gt_dir, 'gt_' + img.replace('jpg', 'txt')))
|
||||
|
||||
files = list(zip(imgs_list, ann_list))
|
||||
assert len(files), f'No images found in {img_dir}'
|
||||
print(f'Loaded {len(files)} images from {img_dir}')
|
||||
|
||||
return files
|
||||
|
||||
|
||||
def collect_annotations(files, nproc=1):
|
||||
"""Collect the annotation information.
|
||||
|
||||
Args:
|
||||
files (list): The list of tuples (image_file, groundtruth_file)
|
||||
nproc (int): The number of process to collect annotations
|
||||
|
||||
Returns:
|
||||
images (list): The list of image information dicts
|
||||
"""
|
||||
assert isinstance(files, list)
|
||||
assert isinstance(nproc, int)
|
||||
|
||||
if nproc > 1:
|
||||
images = mmcv.track_parallel_progress(
|
||||
load_img_info, files, nproc=nproc)
|
||||
else:
|
||||
images = mmcv.track_progress(load_img_info, files)
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def load_img_info(files):
|
||||
"""Load the information of one image.
|
||||
|
||||
Args:
|
||||
files (tuple): The tuple of (img_file, groundtruth_file)
|
||||
|
||||
Returns:
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
"""
|
||||
assert isinstance(files, tuple)
|
||||
|
||||
img_file, gt_file = files
|
||||
# read imgs while ignoring orientations
|
||||
img = mmcv.imread(img_file, 'unchanged')
|
||||
|
||||
img_info = dict(
|
||||
file_name=osp.join(osp.basename(img_file)),
|
||||
height=img.shape[0],
|
||||
width=img.shape[1],
|
||||
segm_file=osp.join(osp.basename(gt_file)))
|
||||
|
||||
if osp.splitext(gt_file)[1] == '.txt':
|
||||
img_info = load_txt_info(gt_file, img_info)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
return img_info
|
||||
|
||||
|
||||
def load_txt_info(gt_file, img_info):
|
||||
"""Collect the annotation information.
|
||||
|
||||
# Annotation Format
|
||||
# x1, y1, x2, y2, x3, y3, x4, y4, transcript
|
||||
|
||||
Args:
|
||||
gt_file (str): The path to ground-truth
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
|
||||
Returns:
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
"""
|
||||
|
||||
with open(gt_file, 'r') as f:
|
||||
anno_info = []
|
||||
annotations = f.readlines()
|
||||
for ann in annotations:
|
||||
try:
|
||||
ann_box = np.array(ann.split(',')[0:8]).astype(int).tolist()
|
||||
except ValueError:
|
||||
# skip invalid annotation line
|
||||
continue
|
||||
x = max(0, min(ann_box[0::2]))
|
||||
y = max(0, min(ann_box[1::2]))
|
||||
w, h = max(ann_box[0::2]) - x, max(ann_box[1::2]) - y
|
||||
bbox = [x, y, w, h]
|
||||
segmentation = ann_box
|
||||
word = ann.split(',')[-1].replace('\n', '').strip()
|
||||
|
||||
anno = dict(
|
||||
iscrowd=0 if word != '###' else 1,
|
||||
category_id=1,
|
||||
bbox=bbox,
|
||||
area=w * h,
|
||||
segmentation=[segmentation])
|
||||
anno_info.append(anno)
|
||||
|
||||
img_info.update(anno_info=anno_info)
|
||||
|
||||
return img_info
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Generate training and val set of DeText ')
|
||||
parser.add_argument('root_path', help='Root dir path of DeText')
|
||||
parser.add_argument(
|
||||
'--nproc', default=1, type=int, help='Number of process')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
root_path = args.root_path
|
||||
|
||||
for split in ['training', 'val']:
|
||||
print(f'Processing {split} set...')
|
||||
with mmcv.Timer(
|
||||
print_tmpl='It takes {}s to convert DeText annotation'):
|
||||
files = collect_files(
|
||||
osp.join(root_path, 'imgs', split),
|
||||
osp.join(root_path, 'annotations', split))
|
||||
image_infos = collect_annotations(files, nproc=args.nproc)
|
||||
convert_annotations(
|
||||
image_infos, osp.join(root_path,
|
||||
'instances_' + split + '.json'))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
224
tools/data/textrecog/detext_converter.py
Normal file
224
tools/data/textrecog/detext_converter.py
Normal file
@ -0,0 +1,224 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import os.path as osp
|
||||
|
||||
import mmcv
|
||||
import numpy as np
|
||||
|
||||
from mmocr.datasets.pipelines.crop import crop_img
|
||||
from mmocr.utils.fileio import list_to_file
|
||||
|
||||
|
||||
def collect_files(img_dir, gt_dir):
|
||||
"""Collect all images and their corresponding groundtruth files.
|
||||
|
||||
Args:
|
||||
img_dir (str): The image directory
|
||||
gt_dir (str): The groundtruth directory
|
||||
|
||||
Returns:
|
||||
files (list): The list of tuples (img_file, groundtruth_file)
|
||||
"""
|
||||
assert isinstance(img_dir, str)
|
||||
assert img_dir
|
||||
assert isinstance(gt_dir, str)
|
||||
assert gt_dir
|
||||
|
||||
ann_list, imgs_list = [], []
|
||||
for img in os.listdir(img_dir):
|
||||
imgs_list.append(osp.join(img_dir, img))
|
||||
ann_list.append(osp.join(gt_dir, 'gt_' + img.replace('jpg', 'txt')))
|
||||
|
||||
files = list(zip(imgs_list, ann_list))
|
||||
assert len(files), f'No images found in {img_dir}'
|
||||
print(f'Loaded {len(files)} images from {img_dir}')
|
||||
|
||||
return files
|
||||
|
||||
|
||||
def collect_annotations(files, nproc=1):
|
||||
"""Collect the annotation information.
|
||||
|
||||
Args:
|
||||
files (list): The list of tuples (image_file, groundtruth_file)
|
||||
nproc (int): The number of process to collect annotations
|
||||
|
||||
Returns:
|
||||
images (list): The list of image information dicts
|
||||
"""
|
||||
assert isinstance(files, list)
|
||||
assert isinstance(nproc, int)
|
||||
|
||||
if nproc > 1:
|
||||
images = mmcv.track_parallel_progress(
|
||||
load_img_info, files, nproc=nproc)
|
||||
else:
|
||||
images = mmcv.track_progress(load_img_info, files)
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def load_img_info(files):
|
||||
"""Load the information of one image.
|
||||
|
||||
Args:
|
||||
files (tuple): The tuple of (img_file, groundtruth_file)
|
||||
|
||||
Returns:
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
"""
|
||||
assert isinstance(files, tuple)
|
||||
|
||||
img_file, gt_file = files
|
||||
# read imgs while ignoring orientations
|
||||
img = mmcv.imread(img_file, 'unchanged')
|
||||
|
||||
img_info = dict(
|
||||
file_name=osp.join(osp.basename(img_file)),
|
||||
height=img.shape[0],
|
||||
width=img.shape[1],
|
||||
segm_file=osp.join(osp.basename(gt_file)))
|
||||
|
||||
if osp.splitext(gt_file)[1] == '.txt':
|
||||
img_info = load_txt_info(gt_file, img_info)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
return img_info
|
||||
|
||||
|
||||
def load_txt_info(gt_file, img_info):
|
||||
"""Collect the annotation information.
|
||||
|
||||
Args:
|
||||
gt_file (str): The path to ground-truth
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
|
||||
Returns:
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
"""
|
||||
|
||||
with open(gt_file, 'r') as f:
|
||||
anno_info = []
|
||||
annotations = f.readlines()
|
||||
for ann in annotations:
|
||||
# Annotation format [x1, y1, x2, y2, x3, y3, x4, y4, transcript]
|
||||
try:
|
||||
bbox = np.array(ann.split(',')[0:8]).astype(int).tolist()
|
||||
except ValueError:
|
||||
# Skip invalid annotation line
|
||||
continue
|
||||
word = ann.split(',')[-1].replace('\n', '').strip()
|
||||
|
||||
# Skip samples without recog gt
|
||||
if word == '###':
|
||||
continue
|
||||
anno = dict(bbox=bbox, word=word)
|
||||
anno_info.append(anno)
|
||||
|
||||
img_info.update(anno_info=anno_info)
|
||||
|
||||
return img_info
|
||||
|
||||
|
||||
def generate_ann(root_path, split, image_infos, preserve_vertical, format):
|
||||
"""Generate cropped annotations and label txt file.
|
||||
|
||||
Args:
|
||||
root_path (str): The root path of the dataset
|
||||
split (str): The split of dataset. Namely: training or test
|
||||
image_infos (list[dict]): A list of dicts of the img and
|
||||
annotation information
|
||||
preserve_vertical (bool): Whether to preserve vertical texts
|
||||
format (str): Annotation format, should be either 'txt' or 'jsonl'
|
||||
"""
|
||||
|
||||
dst_image_root = osp.join(root_path, 'crops', split)
|
||||
ignore_image_root = osp.join(root_path, 'ignores', split)
|
||||
if split == 'training':
|
||||
dst_label_file = osp.join(root_path, f'train_label.{format}')
|
||||
elif split == 'val':
|
||||
dst_label_file = osp.join(root_path, f'val_label.{format}')
|
||||
mmcv.mkdir_or_exist(dst_image_root)
|
||||
mmcv.mkdir_or_exist(ignore_image_root)
|
||||
|
||||
lines = []
|
||||
for image_info in image_infos:
|
||||
index = 1
|
||||
src_img_path = osp.join(root_path, 'imgs', split,
|
||||
image_info['file_name'])
|
||||
image = mmcv.imread(src_img_path)
|
||||
src_img_root = image_info['file_name'].split('.')[0]
|
||||
|
||||
for anno in image_info['anno_info']:
|
||||
word = anno['word']
|
||||
dst_img = crop_img(image, anno['bbox'], 0, 0)
|
||||
h, w, _ = dst_img.shape
|
||||
|
||||
dst_img_name = f'{src_img_root}_{index}.png'
|
||||
index += 1
|
||||
# Skip invalid annotations
|
||||
if min(dst_img.shape) == 0 or len(word) == 0:
|
||||
continue
|
||||
# Filter out vertical texts
|
||||
if not preserve_vertical and h / w > 2 and split == 'training':
|
||||
dst_img_path = osp.join(ignore_image_root, dst_img_name)
|
||||
else:
|
||||
dst_img_path = osp.join(dst_image_root, dst_img_name)
|
||||
mmcv.imwrite(dst_img, dst_img_path)
|
||||
|
||||
if format == 'txt':
|
||||
lines.append(f'{osp.basename(dst_image_root)}/{dst_img_name} '
|
||||
f'{word}')
|
||||
elif format == 'jsonl':
|
||||
lines.append(
|
||||
json.dumps({
|
||||
'filename':
|
||||
f'{osp.basename(dst_image_root)}/{dst_img_name}',
|
||||
'text': word
|
||||
}))
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
list_to_file(dst_label_file, lines)
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Generate training and val set of DeText ')
|
||||
parser.add_argument('root_path', help='Root dir path of DeText')
|
||||
parser.add_argument(
|
||||
'--preserve-vertical',
|
||||
help='Preserve samples containing vertical texts',
|
||||
action='store_true')
|
||||
parser.add_argument(
|
||||
'--format',
|
||||
default='jsonl',
|
||||
help='Use jsonl or string to format annotations',
|
||||
choices=['jsonl', 'txt'])
|
||||
parser.add_argument(
|
||||
'--nproc', default=1, type=int, help='Number of process')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
root_path = args.root_path
|
||||
|
||||
for split in ['training', 'val']:
|
||||
print(f'Processing {split} set...')
|
||||
with mmcv.Timer(
|
||||
print_tmpl='It takes {}s to convert DeText annotation'):
|
||||
files = collect_files(
|
||||
osp.join(root_path, 'imgs', split),
|
||||
osp.join(root_path, 'annotations', split))
|
||||
image_infos = collect_annotations(files, nproc=args.nproc)
|
||||
generate_ann(root_path, split, image_infos, args.preserve_vertical,
|
||||
args.format)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user