mirror of https://github.com/open-mmlab/mmocr.git
[Enhancement] Update textrecog config and readme (#1597)
* [Dataset Preparer] Add TextSpottingConfigGenerator * update init * [Enhancement] Update textrecog configs and raedme * cfg * fixpull/1604/head
parent
08cab32832
commit
fa4fd1fd42
|
@ -1,8 +1,8 @@
|
|||
cute80_textrecog_data_root = 'data/rec/ct80/'
|
||||
cute80_textrecog_data_root = 'data/cute80'
|
||||
|
||||
cute80_textrecog_test = dict(
|
||||
type='OCRDataset',
|
||||
data_root=cute80_textrecog_data_root,
|
||||
ann_file='test_labels.json',
|
||||
ann_file='textrecog_test.json',
|
||||
test_mode=True,
|
||||
pipeline=None)
|
||||
|
|
|
@ -1,15 +1,21 @@
|
|||
icdar2013_textrecog_data_root = 'data/rec/icdar_2013/'
|
||||
icdar2013_textrecog_data_root = 'data/icdar2013'
|
||||
|
||||
icdar2013_textrecog_train = dict(
|
||||
type='OCRDataset',
|
||||
data_root=icdar2013_textrecog_data_root,
|
||||
ann_file='train_labels.json',
|
||||
test_mode=False,
|
||||
ann_file='textrecog_train.json',
|
||||
pipeline=None)
|
||||
|
||||
icdar2013_textrecog_test = dict(
|
||||
type='OCRDataset',
|
||||
data_root=icdar2013_textrecog_data_root,
|
||||
ann_file='test_labels.json',
|
||||
ann_file='textrecog_test.json',
|
||||
test_mode=True,
|
||||
pipeline=None)
|
||||
|
||||
icdar2013_857_textrecog_test = dict(
|
||||
type='OCRDataset',
|
||||
data_root=icdar2013_textrecog_data_root,
|
||||
ann_file='textrecog_test_857.json',
|
||||
test_mode=True,
|
||||
pipeline=None)
|
||||
|
|
|
@ -1,15 +1,21 @@
|
|||
icdar2015_textrecog_data_root = 'data/rec/icdar_2015/'
|
||||
icdar2015_textrecog_data_root = 'data/icdar2015'
|
||||
|
||||
icdar2015_textrecog_train = dict(
|
||||
type='OCRDataset',
|
||||
data_root=icdar2015_textrecog_data_root,
|
||||
ann_file='train_labels.json',
|
||||
test_mode=False,
|
||||
ann_file='textrecog_train.json',
|
||||
pipeline=None)
|
||||
|
||||
icdar2015_textrecog_test = dict(
|
||||
type='OCRDataset',
|
||||
data_root=icdar2015_textrecog_data_root,
|
||||
ann_file='test_labels.json',
|
||||
ann_file='textrecog_test.json',
|
||||
test_mode=True,
|
||||
pipeline=None)
|
||||
|
||||
icdar2015_1811_textrecog_test = dict(
|
||||
type='OCRDataset',
|
||||
data_root=icdar2015_textrecog_data_root,
|
||||
ann_file='textrecog_test_1811.json',
|
||||
test_mode=True,
|
||||
pipeline=None)
|
||||
|
|
|
@ -1,15 +1,14 @@
|
|||
iiit5k_textrecog_data_root = 'data/rec/IIIT5K/'
|
||||
iiit5k_textrecog_data_root = 'data/iiit5k'
|
||||
|
||||
iiit5k_textrecog_train = dict(
|
||||
type='OCRDataset',
|
||||
data_root=iiit5k_textrecog_data_root,
|
||||
ann_file='train_labels.json',
|
||||
test_mode=False,
|
||||
ann_file='textrecog_train.json',
|
||||
pipeline=None)
|
||||
|
||||
iiit5k_textrecog_test = dict(
|
||||
type='OCRDataset',
|
||||
data_root=iiit5k_textrecog_data_root,
|
||||
ann_file='test_labels.json',
|
||||
ann_file='textrecog_test.json',
|
||||
test_mode=True,
|
||||
pipeline=None)
|
||||
|
|
|
@ -1,8 +1,14 @@
|
|||
svt_textrecog_data_root = 'data/rec/svt/'
|
||||
svt_textrecog_data_root = 'data/svt'
|
||||
|
||||
svt_textrecog_train = dict(
|
||||
type='OCRDataset',
|
||||
data_root=svt_textrecog_data_root,
|
||||
ann_file='textrecog_train.json',
|
||||
pipeline=None)
|
||||
|
||||
svt_textrecog_test = dict(
|
||||
type='OCRDataset',
|
||||
data_root=svt_textrecog_data_root,
|
||||
ann_file='test_labels.json',
|
||||
ann_file='textrecog_test.json',
|
||||
test_mode=True,
|
||||
pipeline=None)
|
||||
|
|
|
@ -1,8 +1,14 @@
|
|||
svtp_textrecog_data_root = 'data/rec/svtp/'
|
||||
svtp_textrecog_data_root = 'data/svtp'
|
||||
|
||||
svtp_textrecog_train = dict(
|
||||
type='OCRDataset',
|
||||
data_root=svtp_textrecog_data_root,
|
||||
ann_file='textrecog_train.json',
|
||||
pipeline=None)
|
||||
|
||||
svtp_textrecog_test = dict(
|
||||
type='OCRDataset',
|
||||
data_root=svtp_textrecog_data_root,
|
||||
ann_file='test_labels.json',
|
||||
ann_file='textrecog_test.json',
|
||||
test_mode=True,
|
||||
pipeline=None)
|
||||
|
|
|
@ -34,11 +34,11 @@ Linguistic knowledge is of great benefit to scene text recognition. However, how
|
|||
|
||||
## Results and models
|
||||
|
||||
| methods | pretrained | | Regular Text | | | Irregular Text | | download |
|
||||
| :----------------------------------------------: | :--------------------------------------------------: | :----: | :----------: | :----: | :----: | :------------: | :----: | :------------------------------------------------- |
|
||||
| | | IIIT5K | SVT | IC13 | IC15 | SVTP | CT80 | |
|
||||
| [ABINet-Vision](/configs/textrecog/abinet/abinet-vision_20e_st-an_mj.py) | - | 0.9523 | 0.9057 | 0.9369 | 0.7886 | 0.8403 | 0.8437 | [model](https://download.openmmlab.com/mmocr/textrecog/abinet/abinet-vision_20e_st-an_mj/abinet-vision_20e_st-an_mj_20220915_152445-85cfb03d.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/abinet/abinet-vision_20e_st-an_mj/20220915_152445.log) |
|
||||
| [ABINet](/configs/textrecog/abinet/abinet_20e_st-an_mj.py) | [Pretrained](https://download.openmmlab.com/mmocr/textrecog/abinet/abinet_pretrain-45deac15.pth) | 0.9603 | 0.9382 | 0.9547 | 0.8122 | 0.8868 | 0.8785 | [model](https://download.openmmlab.com/mmocr/textrecog/abinet/abinet_20e_st-an_mj/abinet_20e_st-an_mj_20221005_012617-ead8c139.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/abinet/abinet_20e_st-an_mj/20221005_012617.log) |
|
||||
| methods | pretrained | | Regular Text | | | Irregular Text | | download |
|
||||
| :--------------------------------------------: | :------------------------------------------------: | :----: | :----------: | :-------: | :-------: | :------------: | :----: | :----------------------------------------------- |
|
||||
| | | IIIT5K | SVT | IC13-1015 | IC15-2077 | SVTP | CT80 | |
|
||||
| [ABINet-Vision](/configs/textrecog/abinet/abinet-vision_20e_st-an_mj.py) | - | 0.9523 | 0.9196 | 0.9369 | 0.7896 | 0.8403 | 0.8437 | [model](https://download.openmmlab.com/mmocr/textrecog/abinet/abinet-vision_20e_st-an_mj/abinet-vision_20e_st-an_mj_20220915_152445-85cfb03d.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/abinet/abinet-vision_20e_st-an_mj/20220915_152445.log) |
|
||||
| [ABINet](/configs/textrecog/abinet/abinet_20e_st-an_mj.py) | [Pretrained](https://download.openmmlab.com/mmocr/textrecog/abinet/abinet_pretrain-45deac15.pth) | 0.9603 | 0.9397 | 0.9557 | 0.8146 | 0.8868 | 0.8785 | [model](https://download.openmmlab.com/mmocr/textrecog/abinet/abinet_20e_st-an_mj/abinet_20e_st-an_mj_20221005_012617-ead8c139.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/abinet/abinet_20e_st-an_mj/20221005_012617.log) |
|
||||
|
||||
```{note}
|
||||
1. ABINet allows its encoder to run and be trained without decoder and fuser. Its encoder is designed to recognize texts as a stand-alone model and therefore can work as an independent text recognizer. We release it as ABINet-Vision.
|
||||
|
|
|
@ -33,10 +33,10 @@ Image-based sequence recognition has been a long-standing research topic in comp
|
|||
|
||||
## Results and models
|
||||
|
||||
| methods | | Regular Text | | | | Irregular Text | | download |
|
||||
| :----------------------------------------------------: | :----: | :----------: | :----: | :-: | :----: | :------------: | :----: | :-------------------------------------------------------------------------------------------: |
|
||||
| methods | IIIT5K | SVT | IC13 | | IC15 | SVTP | CT80 | |
|
||||
| [CRNN](/configs/textrecog/crnn/crnn_mini-vgg_5e_mj.py) | 0.8053 | 0.8053 | 0.8739 | | 0.5556 | 0.6093 | 0.5694 | [model](https://download.openmmlab.com/mmocr/textrecog/crnn/crnn_mini-vgg_5e_mj/crnn_mini-vgg_5e_mj_20220826_224120-8afbedbb.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/crnn/crnn_mini-vgg_5e_mj/20220826_224120.log) |
|
||||
| methods | | Regular Text | | | | Irregular Text | | download |
|
||||
| :----------------------------------------------------: | :----: | :----------: | :-------: | :-: | :-------: | :------------: | :----: | :-------------------------------------------------------------------------------------: |
|
||||
| methods | IIIT5K | SVT | IC13-1015 | | IC15-2077 | SVTP | CT80 | |
|
||||
| [CRNN](/configs/textrecog/crnn/crnn_mini-vgg_5e_mj.py) | 0.8053 | 0.7991 | 0.8739 | | 0.5571 | 0.6093 | 0.5694 | [model](https://download.openmmlab.com/mmocr/textrecog/crnn/crnn_mini-vgg_5e_mj/crnn_mini-vgg_5e_mj_20220826_224120-8afbedbb.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/crnn/crnn_mini-vgg_5e_mj/20220826_224120.log) |
|
||||
|
||||
## Citation
|
||||
|
||||
|
|
|
@ -11,7 +11,6 @@ _base_ = [
|
|||
'../_base_/schedules/schedule_adadelta_5e.py',
|
||||
'_base_crnn_mini-vgg.py',
|
||||
]
|
||||
|
||||
# dataset settings
|
||||
train_list = [_base_.mjsynth_textrecog_test]
|
||||
test_list = [
|
||||
|
@ -21,7 +20,6 @@ test_list = [
|
|||
]
|
||||
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=50), )
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=64,
|
||||
num_workers=24,
|
||||
|
|
|
@ -35,10 +35,10 @@ Attention-based scene text recognizers have gained huge success, which leverages
|
|||
|
||||
## Results and Models
|
||||
|
||||
| Methods | Backbone | | Regular Text | | | | Irregular Text | | download |
|
||||
| :----------------------------------------------------------------: | :-----------: | :----: | :----------: | :----: | :-: | :----: | :------------: | :----: | :------------------------------------------------------------------: |
|
||||
| | | IIIT5K | SVT | IC13 | | IC15 | SVTP | CT80 | |
|
||||
| [MASTER](/configs/textrecog/master/master_resnet31_12e_st_mj_sa.py) | R31-GCAModule | 0.9490 | 0.8967 | 0.9517 | | 0.7631 | 0.8465 | 0.8854 | [model](https://download.openmmlab.com/mmocr/textrecog/master/master_resnet31_12e_st_mj_sa/master_resnet31_12e_st_mj_sa_20220915_152443-f4a5cabc.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/master/master_resnet31_12e_st_mj_sa/20220915_152443.log) |
|
||||
| Methods | Backbone | | Regular Text | | | | Irregular Text | | download |
|
||||
| :-------------------------------------------------------------: | :-----------: | :----: | :----------: | :-------: | :-: | :-------: | :------------: | :----: | :---------------------------------------------------------------: |
|
||||
| | | IIIT5K | SVT | IC13-1015 | | IC15-2077 | SVTP | CT80 | |
|
||||
| [MASTER](/configs/textrecog/master/master_resnet31_12e_st_mj_sa.py) | R31-GCAModule | 0.9490 | 0.8887 | 0.9517 | | 0.7650 | 0.8465 | 0.8889 | [model](https://download.openmmlab.com/mmocr/textrecog/master/master_resnet31_12e_st_mj_sa/master_resnet31_12e_st_mj_sa_20220915_152443-f4a5cabc.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/master/master_resnet31_12e_st_mj_sa/20220915_152443.log) |
|
||||
|
||||
## Citation
|
||||
|
||||
|
|
|
@ -34,12 +34,12 @@ Scene text recognition has attracted a great many researches due to its importan
|
|||
|
||||
## Results and Models
|
||||
|
||||
| Methods | Backbone | | Regular Text | | | | Irregular Text | | download |
|
||||
| :------------------------------------------------------------: | :-------------------: | :----: | :----------: | :----: | :-: | :----: | :------------: | :----: | :--------------------------------------------------------------: |
|
||||
| | | IIIT5K | SVT | IC13 | | IC15 | SVTP | CT80 | |
|
||||
| [NRTR](/configs/textrecog/nrtr/nrtr_modality-transform_6e_st_mj.py) | NRTRModalityTransform | 0.9150 | 0.8825 | 0.9369 | | 0.7232 | 0.7783 | 0.7500 | [model](https://download.openmmlab.com/mmocr/textrecog/nrtr/nrtr_modality-transform_6e_st_mj/nrtr_modality-transform_6e_st_mj_20220916_103322-bd9425be.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/nrtr/nrtr_modality-transform_6e_st_mj/20220916_103322.log) |
|
||||
| [NRTR](/configs/textrecog/nrtr/nrtr_resnet31-1by8-1by4_6e_st_mj.py) | R31-1/8-1/4 | 0.9483 | 0.8825 | 0.9507 | | 0.7559 | 0.8016 | 0.8889 | [model](https://download.openmmlab.com/mmocr/textrecog/nrtr/nrtr_resnet31-1by8-1by4_6e_st_mj/nrtr_resnet31-1by8-1by4_6e_st_mj_20220916_103322-a6a2a123.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/nrtr/nrtr_resnet31-1by8-1by4_6e_st_mj/20220916_103322.log) |
|
||||
| [NRTR](/configs/textrecog/nrtr/nrtr_resnet31-1by16-1by8_6e_st_mj.py) | R31-1/16-1/8 | 0.9470 | 0.8964 | 0.9399 | | 0.7357 | 0.7969 | 0.8854 | [model](https://download.openmmlab.com/mmocr/textrecog/nrtr/nrtr_resnet31-1by16-1by8_6e_st_mj/nrtr_resnet31-1by16-1by8_6e_st_mj_20220920_143358-43767036.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/nrtr/nrtr_resnet31-1by16-1by8_6e_st_mj/20220920_143358.log) |
|
||||
| Methods | Backbone | | Regular Text | | | | Irregular Text | | download |
|
||||
| :---------------------------------------------------------: | :-------------------: | :----: | :----------: | :-------: | :-: | :-------: | :------------: | :----: | :-----------------------------------------------------------: |
|
||||
| | | IIIT5K | SVT | IC13-1015 | | IC15-2077 | SVTP | CT80 | |
|
||||
| [NRTR](/configs/textrecog/nrtr/nrtr_modality-transform_6e_st_mj.py) | NRTRModalityTransform | 0.9147 | 0.8841 | 0.9369 | | 0.7246 | 0.7783 | 0.7500 | [model](https://download.openmmlab.com/mmocr/textrecog/nrtr/nrtr_modality-transform_6e_st_mj/nrtr_modality-transform_6e_st_mj_20220916_103322-bd9425be.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/nrtr/nrtr_modality-transform_6e_st_mj/20220916_103322.log) |
|
||||
| [NRTR](/configs/textrecog/nrtr/nrtr_resnet31-1by8-1by4_6e_st_mj.py) | R31-1/8-1/4 | 0.9483 | 0.8918 | 0.9507 | | 0.7578 | 0.8016 | 0.8889 | [model](https://download.openmmlab.com/mmocr/textrecog/nrtr/nrtr_resnet31-1by8-1by4_6e_st_mj/nrtr_resnet31-1by8-1by4_6e_st_mj_20220916_103322-a6a2a123.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/nrtr/nrtr_resnet31-1by8-1by4_6e_st_mj/20220916_103322.log) |
|
||||
| [NRTR](/configs/textrecog/nrtr/nrtr_resnet31-1by16-1by8_6e_st_mj.py) | R31-1/16-1/8 | 0.9470 | 0.8918 | 0.9399 | | 0.7376 | 0.7969 | 0.8854 | [model](https://download.openmmlab.com/mmocr/textrecog/nrtr/nrtr_resnet31-1by16-1by8_6e_st_mj/nrtr_resnet31-1by16-1by8_6e_st_mj_20220920_143358-43767036.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/nrtr/nrtr_resnet31-1by16-1by8_6e_st_mj/20220920_143358.log) |
|
||||
|
||||
## Citation
|
||||
|
||||
|
|
|
@ -40,10 +40,10 @@ The attention-based encoder-decoder framework has recently achieved impressive r
|
|||
|
||||
## Results and Models
|
||||
|
||||
| Methods | GPUs | | Regular Text | | | | Irregular Text | | download |
|
||||
| :---------------------------------------------------------------------: | :--: | :----: | :----------: | :----: | :-: | :----: | :------------: | :----: | :----------------------------------------------------------------------: |
|
||||
| | | IIIT5K | SVT | IC13 | | IC15 | SVTP | CT80 | |
|
||||
| [RobustScanner](/configs/textrecog/robust_scanner/robustscanner_resnet31_5e_st-sub_mj-sub_sa_real.py) | 4 | 0.9510 | 0.8934 | 0.9320 | | 0.7559 | 0.8078 | 0.8715 | [model](https://download.openmmlab.com/mmocr/textrecog/robust_scanner/robustscanner_resnet31_5e_st-sub_mj-sub_sa_real/robustscanner_resnet31_5e_st-sub_mj-sub_sa_real_20220915_152447-7fc35929.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/robust_scanner/robustscanner_resnet31_5e_st-sub_mj-sub_sa_real/20220915_152447.log) |
|
||||
| Methods | GPUs | | Regular Text | | | | Irregular Text | | download |
|
||||
| :------------------------------------------------------------------: | :--: | :----: | :----------: | :-------: | :-: | :-------: | :------------: | :----: | :-------------------------------------------------------------------: |
|
||||
| | | IIIT5K | SVT | IC13-1015 | | IC15-2077 | SVTP | CT80 | |
|
||||
| [RobustScanner](/configs/textrecog/robust_scanner/robustscanner_resnet31_5e_st-sub_mj-sub_sa_real.py) | 4 | 0.9510 | 0.9011 | 0.9320 | | 0.7578 | 0.8078 | 0.8750 | [model](https://download.openmmlab.com/mmocr/textrecog/robust_scanner/robustscanner_resnet31_5e_st-sub_mj-sub_sa_real/robustscanner_resnet31_5e_st-sub_mj-sub_sa_real_20220915_152447-7fc35929.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/robust_scanner/robustscanner_resnet31_5e_st-sub_mj-sub_sa_real/20220915_152447.log) |
|
||||
|
||||
## References
|
||||
|
||||
|
|
|
@ -40,11 +40,11 @@ Recognizing irregular text in natural scene images is challenging due to the lar
|
|||
|
||||
## Results and Models
|
||||
|
||||
| Methods | Backbone | Decoder | | Regular Text | | | | Irregular Text | | download |
|
||||
| :-------------------------------------------------------: | :---------: | :------------------: | :----: | :----------: | :----: | :-: | :----: | :------------: | :----: | :---------------------------------------------------------: |
|
||||
| | | | IIIT5K | SVT | IC13 | | IC15 | SVTP | CT80 | |
|
||||
| [SAR](/configs/textrecog/sar/sar_r31_parallel_decoder_academic.py) | R31-1/8-1/4 | ParallelSARDecoder | 0.9533 | 0.8841 | 0.9369 | | 0.7602 | 0.8326 | 0.9028 | [model](https://download.openmmlab.com/mmocr/textrecog/sar/sar_resnet31_parallel-decoder_5e_st-sub_mj-sub_sa_real/sar_resnet31_parallel-decoder_5e_st-sub_mj-sub_sa_real_20220915_171910-04eb4e75.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/sar/sar_resnet31_parallel-decoder_5e_st-sub_mj-sub_sa_real/20220915_171910.log) |
|
||||
| [SAR](/configs/textrecog/sar/sar_r31_sequential_decoder_academic.py) | R31-1/8-1/4 | SequentialSARDecoder | 0.9553 | 0.8717 | 0.9409 | | 0.7737 | 0.8093 | 0.8924 | [model](https://download.openmmlab.com/mmocr/textrecog/sar/sar_resnet31_sequential-decoder_5e_st-sub_mj-sub_sa_real/sar_resnet31_sequential-decoder_5e_st-sub_mj-sub_sa_real_20220915_185451-1fd6b1fc.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/sar/sar_resnet31_sequential-decoder_5e_st-sub_mj-sub_sa_real/20220915_185451.log) |
|
||||
| Methods | Backbone | Decoder | | Regular Text | | | | Irregular Text | | download |
|
||||
| :----------------------------------------------------: | :---------: | :------------------: | :----: | :----------: | :-------: | :-: | :-------: | :------------: | :----: | :------------------------------------------------------: |
|
||||
| | | | IIIT5K | SVT | IC13-1015 | | IC15-2077 | SVTP | CT80 | |
|
||||
| [SAR](/configs/textrecog/sar/sar_r31_parallel_decoder_academic.py) | R31-1/8-1/4 | ParallelSARDecoder | 0.9533 | 0.8964 | 0.9369 | | 0.7602 | 0.8326 | 0.9062 | [model](https://download.openmmlab.com/mmocr/textrecog/sar/sar_resnet31_parallel-decoder_5e_st-sub_mj-sub_sa_real/sar_resnet31_parallel-decoder_5e_st-sub_mj-sub_sa_real_20220915_171910-04eb4e75.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/sar/sar_resnet31_parallel-decoder_5e_st-sub_mj-sub_sa_real/20220915_171910.log) |
|
||||
| [SAR](/configs/textrecog/sar/sar_r31_sequential_decoder_academic.py) | R31-1/8-1/4 | SequentialSARDecoder | 0.9553 | 0.9073 | 0.9409 | | 0.7761 | 0.8093 | 0.8958 | [model](https://download.openmmlab.com/mmocr/textrecog/sar/sar_resnet31_sequential-decoder_5e_st-sub_mj-sub_sa_real/sar_resnet31_sequential-decoder_5e_st-sub_mj-sub_sa_real_20220915_185451-1fd6b1fc.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/sar/sar_resnet31_sequential-decoder_5e_st-sub_mj-sub_sa_real/20220915_185451.log) |
|
||||
|
||||
## Citation
|
||||
|
||||
|
|
|
@ -34,11 +34,11 @@ Scene text recognition (STR) is the task of recognizing character sequences in n
|
|||
|
||||
## Results and Models
|
||||
|
||||
| Methods | | Regular Text | | | | Irregular Text | | download |
|
||||
| :---------------------------------------------------------------------: | :----: | :----------: | :----: | :-: | :----: | :------------: | :----: | :--------------------------------------------------------------------------: |
|
||||
| | IIIT5K | SVT | IC13 | | IC15 | SVTP | CT80 | |
|
||||
| [Satrn](/configs/textrecog/satrn/satrn_shallow_5e_st_mj.py) | 0.9600 | 0.9196 | 0.9606 | | 0.8031 | 0.8837 | 0.8993 | [model](https://download.openmmlab.com/mmocr/textrecog/satrn/satrn_shallow_5e_st_mj/satrn_shallow_5e_st_mj_20220915_152443-5fd04a4c.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/satrn/satrn_shallow_5e_st_mj/20220915_152443.log) |
|
||||
| [Satrn_small](/configs/textrecog/satrn/satrn_shallow-small_5e_st_mj.py) | 0.9423 | 0.8995 | 0.9567 | | 0.7877 | 0.8574 | 0.8507 | [model](https://download.openmmlab.com/mmocr/textrecog/satrn/satrn_shallow-small_5e_st_mj/satrn_shallow-small_5e_st_mj_20220915_152442-5591bf27.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/satrn/satrn_shallow-small_5e_st_mj/20220915_152442.log) |
|
||||
| Methods | | Regular Text | | | | Irregular Text | | download |
|
||||
| :--------------------------------------------------------------------: | :----: | :----------: | :-------: | :-: | :-------: | :------------: | :----: | :---------------------------------------------------------------------: |
|
||||
| | IIIT5K | SVT | IC13-1015 | | IC15-2077 | SVTP | CT80 | |
|
||||
| [Satrn](/configs/textrecog/satrn/satrn_shallow_5e_st_mj.py) | 0.9600 | 0.9181 | 0.9606 | | 0.8045 | 0.8837 | 0.8993 | [model](https://download.openmmlab.com/mmocr/textrecog/satrn/satrn_shallow_5e_st_mj/satrn_shallow_5e_st_mj_20220915_152443-5fd04a4c.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/satrn/satrn_shallow_5e_st_mj/20220915_152443.log) |
|
||||
| [Satrn_small](/configs/textrecog/satrn/satrn_shallow-small_5e_st_mj.py) | 0.9423 | 0.9011 | 0.9567 | | 0.7886 | 0.8574 | 0.8472 | [model](https://download.openmmlab.com/mmocr/textrecog/satrn/satrn_shallow-small_5e_st_mj/satrn_shallow-small_5e_st_mj_20220915_152442-5591bf27.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/satrn/satrn_shallow-small_5e_st_mj/20220915_152442.log) |
|
||||
|
||||
## Citation
|
||||
|
||||
|
|
Loading…
Reference in New Issue