# Mask R-CNN ## Introduction [ALGORITHM] ```bibtex @INPROCEEDINGS{8237584, author={K. {He} and G. {Gkioxari} and P. {Dollár} and R. {Girshick}}, booktitle={2017 IEEE International Conference on Computer Vision (ICCV)}, title={Mask R-CNN}, year={2017}, pages={2980-2988}, doi={10.1109/ICCV.2017.322}} ``` In tuning parameters, we refer to the baseline method in the following article: ```bibtex @article{pmtd, author={Jingchao Liu and Xuebo Liu and Jie Sheng and Ding Liang and Xin Li and Qingjie Liu}, title={Pyramid Mask Text Detector}, journal={CoRR}, volume={abs/1903.11800}, year={2019} } ``` ## Results and models ### CTW1500 | Method | Pretrained Model | Training set | Test set | #epochs | Test size | Recall | Precision | Hmean | Download | | :---------------------------------------------------------------------: | :--------------: | :-----------: | :----------: | :-----: | :-------: | :----: | :-------: | :---: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | [MaskRCNN](/configs/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_ctw1500.py) | ImageNet | CTW1500 Train | CTW1500 Test | 160 | 1600 | 0.753 | 0.712 | 0.732 | [model](https://download.openmmlab.com/mmocr/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_ctw1500_20210219-96497a76.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_ctw1500_20210219-96497a76.log.json) | ### ICDAR2015 | Method | Pretrained Model | Training set | Test set | #epochs | Test size | Recall | Precision | Hmean | Download | | :-----------------------------------------------------------------------: | :--------------: | :-------------: | :------------: | :-----: | :-------: | :----: | :-------: | :---: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | [MaskRCNN](/configs/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2015.py) | ImageNet | ICDAR2015 Train | ICDAR2015 Test | 160 | 1920 | 0.783 | 0.872 | 0.825 | [model](https://download.openmmlab.com/mmocr/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2015_20210219-8eb340a3.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2015_20210219-8eb340a3.log.json) | ### ICDAR2017 | Method | Pretrained Model | Training set | Test set | #epochs | Test size | Recall | Precision | Hmean | Download | | :-----------------------------------------------------------------------: | :--------------: | :-------------: | :-----------: | :-----: | :-------: | :----: | :-------: | :---: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | [MaskRCNN](/configs/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2017.py) | ImageNet | ICDAR2017 Train | ICDAR2017 Val | 160 | 1600 | 0.754 | 0.827 | 0.789 | [model](https://download.openmmlab.com/mmocr/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2017_20210218-c6ec3ebb.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2017_20210218-c6ec3ebb.log.json) |