_base_ = [ '../../_base_/recog_datasets/mjsynth.py', '../../_base_/recog_datasets/synthtext.py', '../../_base_/recog_datasets/coco_text_v1.py' '../../_base_/recog_datasets/cute80.py', '../../_base_/recog_datasets/iiit5k.py', '../../_base_/recog_datasets/svt.py', '../../_base_/recog_datasets/svtp.py', '../../_base_/recog_datasets/icdar2013.py', '../../_base_/recog_datasets/icdar2015.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_adam_step_5e.py', 'sar.py', ] file_client_args = dict(backend='disk') default_hooks = dict(logger=dict(type='LoggerHook', interval=100)) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args=file_client_args, ignore_empty=True, min_size=5), dict(type='LoadOCRAnnotations', with_text=True), dict( type='RescaleToHeight', height=48, min_width=48, max_width=160, width_divisor=4), dict(type='PadToWidth', width=160), dict( type='PackTextRecogInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict( type='RescaleToHeight', height=48, min_width=48, max_width=160, width_divisor=4), dict(type='PadToWidth', width=160), # add loading annotation after ``Resize`` because ground truth # does not need to do resize data transform dict(type='LoadOCRAnnotations', with_text=True), dict( type='PackTextRecogInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) ] # dataset settings train_list = [ _base_.ic11_rec_train, _base_.ic13_rec_train, _base_.ic15_rec_train, _base_.cocov1_rec_train, _base_.iiit5k_rec_train, _base_.mj_sub_rec_train, _base_.st_sub_rec_train, _base_.st_add_rec_train ] test_list = [ _base_.cute80_rec_test, _base_.iiit5k_rec_test, _base_.svt_rec_test, _base_.svtp_rec_test, _base_.ic13_rec_test, _base_.ic15_rec_test ] train_list = [ dict( type='RepeatDataset', dataset=dict( type='ConcatDataset', datasets=train_list[:5], pipeline=train_pipeline), times=20), dict( type='ConcatDataset', datasets=train_list[5:], pipeline=train_pipeline), ] train_dataloader = dict( batch_size=64, num_workers=8, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict(type='ConcatDataset', datasets=train_list)) test_dataloader = dict( batch_size=1, num_workers=4, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type='ConcatDataset', datasets=test_list, pipeline=test_pipeline)) val_dataloader = test_dataloader val_evaluator = dict( type='MultiDatasetsEvaluator', metrics=[ dict( type='WordMetric', mode=['exact', 'ignore_case', 'ignore_case_symbol']), dict(type='CharMetric') ], datasets_prefix=['CUTE80', 'IIIT5K', 'SVT', 'SVTP', 'IC13', 'IC15']) test_evaluator = val_evaluator visualizer = dict(type='TextRecogLocalVisualizer', name='visualizer')