import numpy as np import torch import mmocr.models.textdet.losses as losses from mmdet.core import BitmapMasks def test_panloss(): panloss = losses.PANLoss() # test bitmasks2tensor mask = [[1, 0, 1], [1, 1, 1], [0, 0, 1]] target = [[1, 0, 1, 0, 0], [1, 1, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] masks = [np.array(mask)] bitmasks = BitmapMasks(masks, 3, 3) target_sz = (6, 5) results = panloss.bitmasks2tensor([bitmasks], target_sz) assert len(results) == 1 assert torch.sum(torch.abs(results[0].float() - torch.Tensor(target))).item() == 0 def test_textsnakeloss(): textsnakeloss = losses.TextSnakeLoss() # test balanced_bce_loss pred = torch.tensor([[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype=torch.float) target = torch.tensor([[0, 1, 0], [1, 0, 1], [0, 1, 0]], dtype=torch.long) mask = torch.tensor([[0, 1, 0], [1, 0, 1], [0, 1, 0]], dtype=torch.long) bce_loss = textsnakeloss.balanced_bce_loss(pred, target, mask).item() assert np.allclose(bce_loss, 0)