_base_ = [ 'sar.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_adam_step_5e.py', ] dataset_type = 'OCRDataset' data_root = 'data/recog/' file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadOCRAnnotations', with_text=True), dict(type='Resize', scale=(160, 48), keep_ratio=False), dict( type='PackTextRecogInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict( type='RescaleToHeight', height=48, min_width=48, max_width=160, width_divisor=4), dict(type='PadToWidth', width=160), dict( type='PackTextRecogInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio', 'instances')) ] train_dataloader = dict( batch_size=64, num_workers=8, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type=dataset_type, data_root=data_root, data_prefix=dict(img_path=None), ann_file='train_label.json', pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=4, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, data_prefix=dict(img_path=None), ann_file='test_label.json', test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = [ dict( type='WordMetric', mode=['exact', 'ignore_case', 'ignore_case_symbol']), dict(type='CharMetric') ] test_evaluator = val_evaluator visualizer = dict(type='TextRecogLocalVisualizer', name='visualizer') dictionary = dict( type='Dictionary', dict_file='dicts/english_digits_symbols.txt', with_start=True, with_end=True, same_start_end=True, with_padding=True, with_unknown=True) model = dict( type='SARNet', backbone=dict(type='ResNet31OCR'), encoder=dict( type='SAREncoder', enc_bi_rnn=False, enc_do_rnn=0.1, enc_gru=False, ), decoder=dict( type='SequentialSARDecoder', enc_bi_rnn=False, dec_bi_rnn=False, dec_do_rnn=0, dec_gru=False, pred_dropout=0.1, d_k=512, pred_concat=True, postprocessor=dict(type='AttentionPostprocessor'), module_loss=dict( type='CEModuleLoss', ignore_first_char=True, reduction='mean')), dictionary=dictionary, max_seq_len=30)