model_poly = dict( type='PSENet', backbone=dict( type='mmdet.ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=-1, norm_cfg=dict(type='SyncBN', requires_grad=True), init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), norm_eval=True, style='caffe'), neck=dict( type='FPNF', in_channels=[256, 512, 1024, 2048], out_channels=256, fusion_type='concat'), det_head=dict( type='PSEHead', in_channels=[256], hidden_dim=256, out_channel=7, module_loss=dict(type='PSEModuleLoss'), postprocessor=dict(type='PSEPostprocessor', text_repr_type='poly')), data_preprocessor=dict( type='TextDetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32)) model_quad = dict( type='PSENet', backbone=dict( type='mmdet.ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=-1, norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=True, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), style='pytorch'), neck=dict( type='FPNF', in_channels=[256, 512, 1024, 2048], out_channels=256, fusion_type='concat'), det_head=dict( type='PSEHead', in_channels=[256], hidden_dim=256, out_channel=7, module_loss=dict(type='PSEModuleLoss'), postprocessor=dict(type='PSEPostprocessor', text_repr_type='quad')), data_preprocessor=dict( type='TextDetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32))