_base_ = [ 'sar.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_adam_step_5e.py', ] dataset_type = 'OCRDataset' data_root = 'data/recog/' file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadOCRAnnotations', with_text=True), dict( type='RescaleToHeight', height=48, min_width=48, max_width=160, width_divisor=4), dict(type='PadToWidth', width=160), dict( type='PackTextRecogInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict( type='RescaleToHeight', height=48, min_width=48, max_width=160, width_divisor=4), dict(type='PadToWidth', width=160), dict( type='PackTextRecogInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio', 'instances')) ] train_dataloader = dict( batch_size=64, num_workers=8, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type=dataset_type, data_root=data_root, data_prefix=dict(img_path=None), ann_file='train_label.json', pipeline=train_pipeline)) val_dataloader = dict( batch_size=1, num_workers=4, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, data_prefix=dict(img_path=None), ann_file='test_label.json', test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = [ dict( type='WordMetric', mode=['exact', 'ignore_case', 'ignore_case_symbol']), dict(type='CharMetric') ] test_evaluator = val_evaluator visualizer = dict(type='TextRecogLocalVisualizer', name='visualizer')