# training schedule for 1x _base_ = [ 'crnn.py', '../../_base_/default_runtime.py', '../../_base_/recog_datasets/MJ_train.py', '../../_base_/recog_datasets/academic_test.py', '../../_base_/schedules/schedule_adadelta_5e.py', ] # dataset settings train_list = {{_base_.train_list}} file_client_args = dict(backend='disk') default_hooks = dict(logger=dict(type='LoggerHook', interval=50), ) train_pipeline = [ dict( type='LoadImageFromFile', color_type='grayscale', file_client_args=file_client_args), dict(type='LoadOCRAnnotations', with_text=True), dict(type='Resize', scale=(100, 32), keep_ratio=False), dict( type='PackTextRecogInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) ] test_pipeline = [ dict( type='LoadImageFromFile', color_type='grayscale', file_client_args=file_client_args), dict( type='RescaleToHeight', height=32, min_width=32, max_width=None, width_divisor=16), dict( type='PackTextRecogInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio', 'instances')) ] train_dataloader = dict( batch_size=64, num_workers=8, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='ConcatDataset', datasets=train_list, pipeline=train_pipeline)) test_cfg = dict(type='MultiTestLoop') val_cfg = dict(type='MultiValLoop') val_dataloader = _base_.val_dataloader test_dataloader = _base_.test_dataloader for dataloader in test_dataloader: dataloader['dataset']['pipeline'] = test_pipeline for dataloader in val_dataloader: dataloader['dataset']['pipeline'] = test_pipeline visualizer = dict(type='TextRecogLocalVisualizer', name='visualizer')