file_client_args = dict(backend='disk') model = dict( type='DRRG', backbone=dict( type='mmdet.ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=-1, norm_cfg=dict(type='BN', requires_grad=True), init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), norm_eval=True, style='caffe'), neck=dict( type='FPN_UNet', in_channels=[256, 512, 1024, 2048], out_channels=32), det_head=dict( type='DRRGHead', in_channels=32, text_region_thr=0.3, center_region_thr=0.4, module_loss=dict(type='DRRGModuleLoss'), postprocessor=dict(type='DRRGPostprocessor', link_thr=0.80)), data_preprocessor=dict( type='TextDetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32)) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args=file_client_args, color_type='color_ignore_orientation'), dict( type='LoadOCRAnnotations', with_bbox=True, with_polygon=True, with_label=True), dict( type='TorchVisionWrapper', op='ColorJitter', brightness=32.0 / 255, saturation=0.5), dict( type='RandomResize', scale=(800, 800), ratio_range=(0.75, 2.5), keep_ratio=True), dict( type='TextDetRandomCropFlip', crop_ratio=0.5, iter_num=1, min_area_ratio=0.2), dict( type='RandomApply', transforms=[dict(type='RandomCrop', min_side_ratio=0.3)], prob=0.8), dict( type='RandomApply', transforms=[ dict( type='RandomRotate', max_angle=60, use_canvas=True, pad_with_fixed_color=False) ], prob=0.5), dict( type='RandomChoice', transforms=[[ dict(type='Resize', scale=800, keep_ratio=True), dict(type='SourceImagePad', target_scale=800) ], dict(type='Resize', scale=800, keep_ratio=False)], prob=[0.4, 0.6]), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape')) ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args=file_client_args, color_type='color_ignore_orientation'), dict(type='Resize', scale=(1024, 640), keep_ratio=True), # add loading annotation after ``Resize`` because ground truth # does not need to do resize data transform dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor')) ]