import argparse import glob import os.path as osp from functools import partial import cv2 import mmcv import numpy as np import scipy.io as scio from shapely.geometry import Polygon from mmocr.utils import convert_annotations, drop_orientation, is_not_png def collect_files(img_dir, gt_dir, split): """Collect all images and their corresponding groundtruth files. Args: img_dir(str): The image directory gt_dir(str): The groundtruth directory split(str): The split of dataset. Namely: training or test Returns: files(list): The list of tuples (img_file, groundtruth_file) """ assert isinstance(img_dir, str) assert img_dir assert isinstance(gt_dir, str) assert gt_dir # note that we handle png and jpg only. Pls convert others such as gif to # jpg or png offline suffixes = ['.png', '.PNG', '.jpg', '.JPG', '.jpeg', '.JPEG'] # suffixes = ['.png'] imgs_list = [] for suffix in suffixes: imgs_list.extend(glob.glob(osp.join(img_dir, '*' + suffix))) imgs_list = [ drop_orientation(f) if is_not_png(f) else f for f in imgs_list ] files = [] if split == 'training': for img_file in imgs_list: gt_file = osp.join( gt_dir, 'poly_gt_' + osp.splitext(osp.basename(img_file))[0] + '.mat') files.append((img_file, gt_file)) assert len(files), f'No images found in {img_dir}' print(f'Loaded {len(files)} images from {img_dir}') elif split == 'test': for img_file in imgs_list: gt_file = osp.join( gt_dir, 'poly_gt_' + osp.splitext(osp.basename(img_file))[0] + '.mat') files.append((img_file, gt_file)) assert len(files), f'No images found in {img_dir}' print(f'Loaded {len(files)} images from {img_dir}') return files def collect_annotations(files, split, nproc=1): """Collect the annotation information. Args: files(list): The list of tuples (image_file, groundtruth_file) split(str): The split of dataset. Namely: training or test nproc(int): The number of process to collect annotations Returns: images(list): The list of image information dicts """ assert isinstance(files, list) assert isinstance(split, str) assert isinstance(nproc, int) load_img_info_with_split = partial(load_img_info, split=split) if nproc > 1: images = mmcv.track_parallel_progress( load_img_info_with_split, files, nproc=nproc) else: images = mmcv.track_progress(load_img_info_with_split, files) return images def get_contours(gt_path, split): """Get the contours and words for each ground_truth file. Args: gt_path(str): The relative path of the ground_truth mat file split(str): The split of dataset: training or test Returns: contours(list[lists]): A list of lists of contours for the text instances words(list[list]): A list of lists of words (string) for the text instances """ assert isinstance(gt_path, str) assert isinstance(split, str) contours = [] words = [] data = scio.loadmat(gt_path) if split == 'training': data_polygt = data['polygt'] elif split == 'test': data_polygt = data['polygt'] for i, lines in enumerate(data_polygt): X = np.array(lines[1]) Y = np.array(lines[3]) point_num = len(X[0]) word = lines[4] if len(word) == 0: word = '???' else: word = word[0] if word == '#': word = '###' continue words.append(word) arr = np.concatenate([X, Y]).T contour = [] for i in range(point_num): contour.append(arr[i][0]) contour.append(arr[i][1]) contours.append(np.asarray(contour)) return contours, words def load_mat_info(img_info, gt_file, split): """Load the information of one ground truth in .mat format. Args: img_info(dict): The dict of only the image information gt_file(str): The relative path of the ground_truth mat file for one image split(str): The split of dataset: training or test Returns: img_info(dict): The dict of the img and annotation information """ assert isinstance(img_info, dict) assert isinstance(gt_file, str) assert isinstance(split, str) contours, words = get_contours(gt_file, split) anno_info = [] for contour in contours: if contour.shape[0] == 2: continue category_id = 1 coordinates = np.array(contour).reshape(-1, 2) polygon = Polygon(coordinates) iscrowd = 0 area = polygon.area # convert to COCO style XYWH format min_x, min_y, max_x, max_y = polygon.bounds bbox = [min_x, min_y, max_x - min_x, max_y - min_y] anno = dict( iscrowd=iscrowd, category_id=category_id, bbox=bbox, area=area, segmentation=[contour]) anno_info.append(anno) img_info.update(anno_info=anno_info) return img_info def load_png_info(gt_file, img_info): """Load the information of one ground truth in .png format. Args: gt_file(str): The relative path of the ground_truth file for one image img_info(dict): The dict of only the image information Returns: img_info(dict): The dict of the img and annotation information """ assert isinstance(gt_file, str) assert isinstance(img_info, dict) gt_img = cv2.imread(gt_file, 0) contours, _ = cv2.findContours(gt_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) anno_info = [] for contour in contours: if contour.shape[0] == 2: continue category_id = 1 xy = np.array(contour).flatten().tolist() coordinates = np.array(contour).reshape(-1, 2) polygon = Polygon(coordinates) iscrowd = 0 area = polygon.area # convert to COCO style XYWH format min_x, min_y, max_x, max_y = polygon.bounds bbox = [min_x, min_y, max_x - min_x, max_y - min_y] anno = dict( iscrowd=iscrowd, category_id=category_id, bbox=bbox, area=area, segmentation=[xy]) anno_info.append(anno) img_info.update(anno_info=anno_info) return img_info def load_img_info(files, split): """Load the information of one image. Args: files(tuple): The tuple of (img_file, groundtruth_file) split(str): The split of dataset: training or test Returns: img_info(dict): The dict of the img and annotation information """ assert isinstance(files, tuple) assert isinstance(split, str) img_file, gt_file = files # read imgs with ignoring orientations img = mmcv.imread(img_file, 'unchanged') # read imgs with orientations as dataloader does when training and testing img_color = mmcv.imread(img_file, 'color') # make sure imgs have no orientation info, or annotation gt is wrong. assert img.shape[0:2] == img_color.shape[0:2] split_name = osp.basename(osp.dirname(img_file)) img_info = dict( # remove img_prefix for filename file_name=osp.join(split_name, osp.basename(img_file)), height=img.shape[0], width=img.shape[1], # anno_info=anno_info, segm_file=osp.join(split_name, osp.basename(gt_file))) if split == 'training': img_info = load_mat_info(img_info, gt_file, split) elif split == 'test': img_info = load_mat_info(img_info, gt_file, split) else: raise NotImplementedError return img_info def parse_args(): parser = argparse.ArgumentParser( description='Convert totaltext annotations to COCO format') parser.add_argument('root_path', help='totaltext root path') parser.add_argument('-o', '--out-dir', help='output path') parser.add_argument( '--split-list', nargs='+', help='a list of splits. e.g., "--split_list training test"') parser.add_argument( '--nproc', default=1, type=int, help='number of process') args = parser.parse_args() return args def main(): args = parse_args() root_path = args.root_path out_dir = args.out_dir if args.out_dir else root_path mmcv.mkdir_or_exist(out_dir) img_dir = osp.join(root_path, 'imgs') gt_dir = osp.join(root_path, 'annotations') set_name = {} for split in args.split_list: set_name.update({split: 'instances_' + split + '.json'}) assert osp.exists(osp.join(img_dir, split)) for split, json_name in set_name.items(): print(f'Converting {split} into {json_name}') with mmcv.Timer( print_tmpl='It takes {}s to convert totaltext annotation'): files = collect_files( osp.join(img_dir, split), osp.join(gt_dir, split), split) image_infos = collect_annotations(files, split, nproc=args.nproc) convert_annotations(image_infos, osp.join(out_dir, json_name)) if __name__ == '__main__': main()