_base_ = [ 'master.py', '../../_base_/recog_datasets/toy_data.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_adam_step_12e.py', ] # dataset settings train_list = {{_base_.train_list}} test_list = {{_base_.test_list}} file_client_args = dict(backend='disk') default_hooks = dict(logger=dict(type='LoggerHook', interval=50), ) train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadOCRAnnotations', with_text=True), dict( type='RescaleToHeight', height=48, min_width=48, max_width=160, width_divisor=16), dict(type='PadToWidth', width=160), dict( type='PackTextRecogInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict( type='RescaleToHeight', height=48, min_width=48, max_width=160, width_divisor=16), dict(type='PadToWidth', width=160), dict( type='PackTextRecogInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio', 'instances')) ] train_dataloader = dict( batch_size=2, num_workers=1, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='ConcatDataset', datasets=train_list, pipeline=train_pipeline)) val_dataloader = dict( batch_size=2, num_workers=1, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type='ConcatDataset', datasets=test_list, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = [ dict( type='WordMetric', mode=['exact', 'ignore_case', 'ignore_case_symbol']), dict(type='CharMetric') ] test_evaluator = val_evaluator visualizer = dict(type='TextRecogLocalVisualizer', name='visualizer')