_base_ = [ '_base_fcenet_resnet50_fpn.py', '../_base_/datasets/totaltext.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_sgd_base.py', ] default_hooks = dict( checkpoint=dict( type='CheckpointHook', save_best='icdar/hmean', rule='greater', _delete_=True)) train_pipeline = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True, ), dict(type='FixInvalidPolygon'), dict( type='RandomResize', scale=(800, 800), ratio_range=(0.75, 2.5), keep_ratio=True), dict( type='TextDetRandomCropFlip', crop_ratio=0.5, iter_num=1, min_area_ratio=0.2), dict( type='RandomApply', transforms=[dict(type='RandomCrop', min_side_ratio=0.3)], prob=0.8), dict( type='RandomApply', transforms=[ dict( type='RandomRotate', max_angle=30, pad_with_fixed_color=False, use_canvas=True) ], prob=0.5), dict( type='RandomChoice', transforms=[[ dict(type='Resize', scale=800, keep_ratio=True), dict(type='SourceImagePad', target_scale=800) ], dict(type='Resize', scale=800, keep_ratio=False)], prob=[0.6, 0.4]), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict( type='TorchVisionWrapper', op='ColorJitter', brightness=32.0 / 255, saturation=0.5, contrast=0.5), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] test_pipeline = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), dict(type='Resize', scale=(1280, 960), keep_ratio=True), # add loading annotation after ``Resize`` because ground truth # does not need to do resize data transform dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True), dict(type='FixInvalidPolygon'), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] optim_wrapper = dict(optimizer=dict(lr=1e-3, weight_decay=5e-4)) train_cfg = dict(max_epochs=1500) # learning policy param_scheduler = [ dict(type='StepLR', gamma=0.8, step_size=200, end=1200), ] # dataset settings totaltext_textdet_train = _base_.totaltext_textdet_train totaltext_textdet_test = _base_.totaltext_textdet_test totaltext_textdet_train.pipeline = train_pipeline totaltext_textdet_test.pipeline = test_pipeline train_dataloader = dict( batch_size=16, num_workers=16, persistent_workers=True, pin_memory=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=totaltext_textdet_train) val_dataloader = dict( batch_size=1, num_workers=1, persistent_workers=True, pin_memory=True, sampler=dict(type='DefaultSampler', shuffle=False), dataset=totaltext_textdet_test) test_dataloader = val_dataloader auto_scale_lr = dict(base_batch_size=16) find_unused_parameters = True