# Text Recognition ## Overview | Dataset | images | annotation file | annotation file | | :-------------------: | :---------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------: | | | | training | test | | coco_text | [homepage](https://rrc.cvc.uab.es/?ch=5&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/coco_text/train_label.txt) | - | | ICDAR2011 | [homepage](https://rrc.cvc.uab.es/?ch=1) | - | - | | ICDAR2013 | [homepage](https://rrc.cvc.uab.es/?ch=2) | - | - | | icdar_2015 | [homepage](https://rrc.cvc.uab.es/?ch=4&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt) | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/test_label.txt) | | IIIT5K | [homepage](http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/IIIT5K.html) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/train_label.txt) | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/test_label.txt) | | ct80 | [homepage](http://cs-chan.com/downloads_CUTE80_dataset.html) | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/ct80/test_label.txt) | | svt | [homepage](http://www.iapr-tc11.org/mediawiki/index.php/The_Street_View_Text_Dataset) | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svt/test_label.txt) | | svtp | [unofficial homepage\[1\]](https://github.com/Jyouhou/Case-Sensitive-Scene-Text-Recognition-Datasets) | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svtp/test_label.txt) | | MJSynth (Syn90k) | [homepage](https://www.robots.ox.ac.uk/~vgg/data/text/) | [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/shuffle_labels.txt) \| [label.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/label.txt) | - | | SynthText (Synth800k) | [homepage](https://www.robots.ox.ac.uk/~vgg/data/scenetext/) | [alphanumeric_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/alphanumeric_labels.txt) \|[shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/shuffle_labels.txt) \| [instances_train.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/instances_train.txt) \| [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/label.txt) | - | | SynthAdd | [SynthText_Add.zip](https://pan.baidu.com/s/1uV0LtoNmcxbO-0YA7Ch4dg) (code:627x) | [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthAdd/label.txt) | - | | TextOCR | [homepage](https://textvqa.org/textocr/dataset) | - | - | | Totaltext | [homepage](https://github.com/cs-chan/Total-Text-Dataset) | - | - | | OpenVINO | [Open Images](https://github.com/cvdfoundation/open-images-dataset) | [annotations](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text) | [annotations](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text) | | FUNSD | [homepage](https://guillaumejaume.github.io/FUNSD/) | - | - | | DeText | [homepage](https://rrc.cvc.uab.es/?ch=9) | - | - | | NAF | [homepage](https://github.com/herobd/NAF_dataset) | - | - | | SROIE | [homepage](https://rrc.cvc.uab.es/?ch=13) | - | - | | Lecture Video DB | [homepage](https://cvit.iiit.ac.in/research/projects/cvit-projects/lecturevideodb) | - | - | | LSVT | [homepage](https://rrc.cvc.uab.es/?ch=16) | - | - | | IMGUR | [homepage](https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset) | - | - | | KAIST | [homepage](http://www.iapr-tc11.org/mediawiki/index.php/KAIST_Scene_Text_Database) | - | - | | MTWI | [homepage](https://tianchi.aliyun.com/competition/entrance/231685/information?lang=en-us) | - | - | | COCO Text v2 | [homepage](https://bgshih.github.io/cocotext/) | - | - | | ReCTS | [homepage](https://rrc.cvc.uab.es/?ch=12) | - | - | | IIIT-ILST | [homepage](http://cvit.iiit.ac.in/research/projects/cvit-projects/iiit-ilst) | - | - | | VinText | [homepage](https://github.com/VinAIResearch/dict-guided) | - | - | | BID | [homepage](https://github.com/ricardobnjunior/Brazilian-Identity-Document-Dataset) | - | - | | RCTW | [homepage](https://rctw.vlrlab.net/index.html) | - | - | | HierText | [homepage](https://github.com/google-research-datasets/hiertext) | - | - | | ArT | [homepage](https://rrc.cvc.uab.es/?ch=14) | - | - | (*) Since the official homepage is unavailable now, we provide an alternative for quick reference. However, we do not guarantee the correctness of the dataset. ### Install AWS CLI (optional) - Since there are some datasets that require the [AWS CLI](https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html) to be installed in advance, we provide a quick installation guide here: ```bash curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip" unzip awscliv2.zip sudo ./aws/install ./aws/install -i /usr/local/aws-cli -b /usr/local/bin !aws configure # this command will require you to input keys, you can skip them except # for the Default region name # AWS Access Key ID [None]: # AWS Secret Access Key [None]: # Default region name [None]: us-east-1 # Default output format [None] ``` ## ICDAR 2011 (Born-Digital Images) - Step1: Download `Challenge1_Training_Task3_Images_GT.zip`, `Challenge1_Test_Task3_Images.zip`, and `Challenge1_Test_Task3_GT.txt` from [homepage](https://rrc.cvc.uab.es/?ch=1&com=downloads) `Task 1.3: Word Recognition (2013 edition)`. ```bash mkdir icdar2011 && cd icdar2011 mkdir annotations # Download ICDAR 2011 wget https://rrc.cvc.uab.es/downloads/Challenge1_Training_Task3_Images_GT.zip --no-check-certificate wget https://rrc.cvc.uab.es/downloads/Challenge1_Test_Task3_Images.zip --no-check-certificate wget https://rrc.cvc.uab.es/downloads/Challenge1_Test_Task3_GT.txt --no-check-certificate # For images mkdir crops unzip -q Challenge1_Training_Task3_Images_GT.zip -d crops/train unzip -q Challenge1_Test_Task3_Images.zip -d crops/test # For annotations mv Challenge1_Test_Task3_GT.txt annotations && mv train/gt.txt annotations/Challenge1_Train_Task3_GT.txt ``` - Step2: Convert original annotations to `Train_label.jsonl` and `Test_label.jsonl` with the following command: ```bash python tools/data/textrecog/ic11_converter.py PATH/TO/icdar2011 ``` - After running the above codes, the directory structure should be as follows: ```text ├── icdar2011 │ ├── crops │ ├── train_label.jsonl │ └── test_label.jsonl ``` ## ICDAR 2013 (Focused Scene Text) - Step1: Download `Challenge2_Training_Task3_Images_GT.zip`, `Challenge2_Test_Task3_Images.zip`, and `Challenge2_Test_Task3_GT.txt` from [homepage](https://rrc.cvc.uab.es/?ch=2&com=downloads) `Task 2.3: Word Recognition (2013 edition)`. ```bash mkdir icdar2013 && cd icdar2013 mkdir annotations # Download ICDAR 2013 wget https://rrc.cvc.uab.es/downloads/Challenge2_Training_Task3_Images_GT.zip --no-check-certificate wget https://rrc.cvc.uab.es/downloads/Challenge2_Test_Task3_Images.zip --no-check-certificate wget https://rrc.cvc.uab.es/downloads/Challenge2_Test_Task3_GT.txt --no-check-certificate # For images mkdir crops unzip -q Challenge2_Training_Task3_Images_GT.zip -d crops/train unzip -q Challenge2_Test_Task3_Images.zip -d crops/test # For annotations mv Challenge2_Test_Task3_GT.txt annotations && mv crops/train/gt.txt annotations/Challenge2_Train_Task3_GT.txt rm Challenge2_Training_Task3_Images_GT.zip && rm Challenge2_Test_Task3_Images.zip ``` - Step 2: Generate `Train_label.jsonl` and `Test_label.jsonl` with the following command: ```bash python tools/data/textrecog/ic13_converter.py PATH/TO/icdar2013 ``` - After running the above codes, the directory structure should be as follows: ```text ├── icdar2013 │ ├── crops │ ├── train_label.jsonl │ └── test_label.jsonl ``` ## ICDAR 2013 [Deprecated] - Step1: Download `Challenge2_Test_Task3_Images.zip` and `Challenge2_Training_Task3_Images_GT.zip` from [homepage](https://rrc.cvc.uab.es/?ch=2&com=downloads) - Step2: Download [test_label_1015.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/test_label_1015.txt) and [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/train_label.txt) - After running the above codes, the directory structure should be as follows: ```text ├── icdar_2013 │ ├── train_label.txt │ ├── test_label_1015.txt │ ├── test_label_1095.txt │ ├── Challenge2_Training_Task3_Images_GT │ └── Challenge2_Test_Task3_Images ``` ## ICDAR 2015 - Step1: Download `ch4_training_word_images_gt.zip` and `ch4_test_word_images_gt.zip` from [homepage](https://rrc.cvc.uab.es/?ch=4&com=downloads) - Step2: Download [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt) and [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/test_label.txt) - After running the above codes, the directory structure should be as follows: ```text ├── icdar_2015 │ ├── train_label.txt │ ├── test_label.txt │ ├── ch4_training_word_images_gt │ └── ch4_test_word_images_gt ``` ## IIIT5K - Step1: Download `IIIT5K-Word_V3.0.tar.gz` from [homepage](http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/IIIT5K.html) - Step2: Download [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/train_label.txt) and [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/test_label.txt) - After running the above codes, the directory structure should be as follows: ```text ├── III5K │ ├── train_label.txt │ ├── test_label.txt │ ├── train │ └── test ``` ## svt - Step1: Download `svt.zip` form [homepage](http://www.iapr-tc11.org/mediawiki/index.php/The_Street_View_Text_Dataset) - Step2: Download [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svt/test_label.txt) - Step3: ```bash python tools/data/textrecog/svt_converter.py ``` - After running the above codes, the directory structure should be as follows: ```text ├── svt │ ├── test_label.txt │ └── image ``` ## ct80 - Step1: Download [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/ct80/test_label.txt) - Step2: Download [timage.tar.gz](https://download.openmmlab.com/mmocr/data/mixture/ct80/timage.tar.gz) - Step3: ```bash mkdir ct80 && cd ct80 mv /path/to/test_label.txt . mv /path/to/timage.tar.gz . tar -xvf timage.tar.gz # create soft link cd /path/to/mmocr/data/mixture ln -s /path/to/ct80 ct80 ``` - After running the above codes, the directory structure should be as follows: ```text ├── ct80 │ ├── test_label.txt │ └── timage ``` ## svtp - Step1: Download [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svtp/test_label.txt) - After running the above codes, the directory structure should be as follows: ```text ├── svtp │ ├── test_label.txt │ └── image ``` ## coco_text - Step1: Download from [homepage](https://rrc.cvc.uab.es/?ch=5&com=downloads) - Step2: Download [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/coco_text/train_label.txt) - After running the above codes, the directory structure should be as follows: ```text ├── coco_text │ ├── train_label.txt │ └── train_words ``` ## MJSynth (Syn90k) - Step1: Download `mjsynth.tar.gz` from [homepage](https://www.robots.ox.ac.uk/~vgg/data/text/) - Step2: Download [label.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/label.txt) (8,919,273 annotations) and [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/shuffle_labels.txt) (2,400,000 randomly sampled annotations). ```{note} Please make sure you're using the right annotation to train the model by checking its dataset specs in Model Zoo. ``` - Step3: ```bash mkdir Syn90k && cd Syn90k mv /path/to/mjsynth.tar.gz . tar -xzf mjsynth.tar.gz mv /path/to/shuffle_labels.txt . mv /path/to/label.txt . # create soft link cd /path/to/mmocr/data/mixture ln -s /path/to/Syn90k Syn90k # Convert 'txt' format annos to 'lmdb' (optional) cd /path/to/mmocr python tools/data/utils/lmdb_converter.py data/mixture/Syn90k/label.txt data/mixture/Syn90k/label.lmdb --label-only ``` - After running the above codes, the directory structure should be as follows: ```text ├── Syn90k │ ├── shuffle_labels.txt │ ├── label.txt │ ├── label.lmdb (optional) │ └── mnt ``` ## SynthText (Synth800k) - Step1: Download `SynthText.zip` from [homepage](https://www.robots.ox.ac.uk/~vgg/data/scenetext/) - Step2: According to your actual needs, download the most appropriate one from the following options: [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/label.txt) (7,266,686 annotations), [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/shuffle_labels.txt) (2,400,000 randomly sampled annotations), [alphanumeric_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/alphanumeric_labels.txt) (7,239,272 annotations with alphanumeric characters only) and [instances_train.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/instances_train.txt) (7,266,686 character-level annotations). ```{warning} Please make sure you're using the right annotation to train the model by checking its dataset specs in Model Zoo. ``` - Step3: ```bash mkdir SynthText && cd SynthText mv /path/to/SynthText.zip . unzip SynthText.zip mv SynthText synthtext mv /path/to/shuffle_labels.txt . mv /path/to/label.txt . mv /path/to/alphanumeric_labels.txt . mv /path/to/instances_train.txt . # create soft link cd /path/to/mmocr/data/mixture ln -s /path/to/SynthText SynthText ``` - Step4: Generate cropped images and labels: ```bash cd /path/to/mmocr python tools/data/textrecog/synthtext_converter.py data/mixture/SynthText/gt.mat data/mixture/SynthText/ data/mixture/SynthText/synthtext/SynthText_patch_horizontal --n_proc 8 # Convert 'txt' format annos to 'lmdb' (optional) cd /path/to/mmocr python tools/data/utils/lmdb_converter.py data/mixture/SynthText/label.txt data/mixture/SynthText/label.lmdb --label-only ``` - After running the above codes, the directory structure should be as follows: ```text ├── SynthText │ ├── alphanumeric_labels.txt │ ├── shuffle_labels.txt │ ├── instances_train.txt │ ├── label.txt │ ├── label.lmdb (optional) │ └── synthtext ``` ## SynthAdd - Step1: Download `SynthText_Add.zip` from [SynthAdd](https://pan.baidu.com/s/1uV0LtoNmcxbO-0YA7Ch4dg) (code:627x)) - Step2: Download [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthAdd/label.txt) - Step3: ```bash mkdir SynthAdd && cd SynthAdd mv /path/to/SynthText_Add.zip . unzip SynthText_Add.zip mv /path/to/label.txt . # create soft link cd /path/to/mmocr/data/mixture ln -s /path/to/SynthAdd SynthAdd # Convert 'txt' format annos to 'lmdb' (optional) cd /path/to/mmocr python tools/data/utils/lmdb_converter.py data/mixture/SynthAdd/label.txt data/mixture/SynthAdd/label.lmdb --label-only ``` - After running the above codes, the directory structure should be as follows: ```text ├── SynthAdd │ ├── label.txt │ ├── label.lmdb (optional) │ └── SynthText_Add ``` ````{tip} To convert label file from `txt` format to `lmdb` format, ```bash python tools/data/utils/lmdb_converter.py --label-only ``` For example, ```bash python tools/data/utils/lmdb_converter.py data/mixture/Syn90k/label.txt data/mixture/Syn90k/label.lmdb --label-only ``` ```` ## TextOCR - Step1: Download [train_val_images.zip](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip), [TextOCR_0.1_train.json](https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_train.json) and [TextOCR_0.1_val.json](https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_val.json) to `textocr/`. ```bash mkdir textocr && cd textocr # Download TextOCR dataset wget https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip wget https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_train.json wget https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_val.json # For images unzip -q train_val_images.zip mv train_images train ``` - Step2: Generate `train_label.txt`, `val_label.txt` and crop images using 4 processes with the following command: ```bash python tools/data/textrecog/textocr_converter.py /path/to/textocr 4 ``` - After running the above codes, the directory structure should be as follows: ```text ├── TextOCR │ ├── image │ ├── train_label.txt │ └── val_label.txt ``` ## Totaltext - Step1: Download `totaltext.zip` from [github dataset](https://github.com/cs-chan/Total-Text-Dataset/tree/master/Dataset) and `groundtruth_text.zip` or `TT_new_train_GT.zip` (if you prefer to use the latest version of training annotations) from [github Groundtruth](https://github.com/cs-chan/Total-Text-Dataset/tree/master/Groundtruth/Text) (Our totaltext_converter.py supports groundtruth with both .mat and .txt format). ```bash mkdir totaltext && cd totaltext mkdir imgs && mkdir annotations # For images # in ./totaltext unzip totaltext.zip mv Images/Train imgs/training mv Images/Test imgs/test # For legacy training and test annotations unzip groundtruth_text.zip mv Groundtruth/Polygon/Train annotations/training mv Groundtruth/Polygon/Test annotations/test # Using the latest training annotations # WARNING: Delete legacy train annotations before running the following command. unzip TT_new_train_GT.zip mv Train annotations/training ``` - Step2: Generate cropped images, `train_label.txt` and `test_label.txt` with the following command (the cropped images will be saved to `data/totaltext/dst_imgs/`): ```bash python tools/data/textrecog/totaltext_converter.py /path/to/totaltext ``` - After running the above codes, the directory structure should be as follows: ```text ├── totaltext │ ├── dst_imgs │ ├── train_label.txt │ └── test_label.txt ``` ## OpenVINO - Step1 (optional): Install [AWS CLI](https://mmocr.readthedocs.io/en/latest/datasets/recog.html#install-aws-cli-optional). - Step2: Download [Open Images](https://github.com/cvdfoundation/open-images-dataset#download-images-with-bounding-boxes-annotations) subsets `train_1`, `train_2`, `train_5`, `train_f`, and `validation` to `openvino/`. ```bash mkdir openvino && cd openvino # Download Open Images subsets for s in 1 2 5 f; do aws s3 --no-sign-request cp s3://open-images-dataset/tar/train_${s}.tar.gz . done aws s3 --no-sign-request cp s3://open-images-dataset/tar/validation.tar.gz . # Download annotations for s in 1 2 5 f; do wget https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text/text_spotting_openimages_v5_train_${s}.json done wget https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text/text_spotting_openimages_v5_validation.json # Extract images mkdir -p openimages_v5/val for s in 1 2 5 f; do tar zxf train_${s}.tar.gz -C openimages_v5 done tar zxf validation.tar.gz -C openimages_v5/val ``` - Step3: Generate `train_{1,2,5,f}_label.txt`, `val_label.txt` and crop images using 4 processes with the following command: ```bash python tools/data/textrecog/openvino_converter.py /path/to/openvino 4 ``` - After running the above codes, the directory structure should be as follows: ```text ├── OpenVINO │ ├── image_1 │ ├── image_2 │ ├── image_5 │ ├── image_f │ ├── image_val │ ├── train_1_label.txt │ ├── train_2_label.txt │ ├── train_5_label.txt │ ├── train_f_label.txt │ └── val_label.txt ``` ## DeText - Step1: Download `ch9_training_images.zip`, `ch9_training_localization_transcription_gt.zip`, `ch9_validation_images.zip`, and `ch9_validation_localization_transcription_gt.zip` from **Task 3: End to End** on the [homepage](https://rrc.cvc.uab.es/?ch=9). ```bash mkdir detext && cd detext mkdir imgs && mkdir annotations && mkdir imgs/training && mkdir imgs/val && mkdir annotations/training && mkdir annotations/val # Download DeText wget https://rrc.cvc.uab.es/downloads/ch9_training_images.zip --no-check-certificate wget https://rrc.cvc.uab.es/downloads/ch9_training_localization_transcription_gt.zip --no-check-certificate wget https://rrc.cvc.uab.es/downloads/ch9_validation_images.zip --no-check-certificate wget https://rrc.cvc.uab.es/downloads/ch9_validation_localization_transcription_gt.zip --no-check-certificate # Extract images and annotations unzip -q ch9_training_images.zip -d imgs/training && unzip -q ch9_training_localization_transcription_gt.zip -d annotations/training && unzip -q ch9_validation_images.zip -d imgs/val && unzip -q ch9_validation_localization_transcription_gt.zip -d annotations/val # Remove zips rm ch9_training_images.zip && rm ch9_training_localization_transcription_gt.zip && rm ch9_validation_images.zip && rm ch9_validation_localization_transcription_gt.zip ``` - Step2: Generate `instances_training.json` and `instances_val.json` with following command: ```bash # Add --preserve-vertical to preserve vertical texts for training, otherwise # vertical images will be filtered and stored in PATH/TO/detext/ignores python tools/data/textrecog/detext_converter.py PATH/TO/detext --nproc 4 ``` - After running the above codes, the directory structure should be as follows: ```text ├── detext │ ├── crops │ ├── ignores │ ├── train_label.jsonl │ └── test_label.jsonl ``` ## NAF - Step1: Download [labeled_images.tar.gz](https://github.com/herobd/NAF_dataset/releases/tag/v1.0) to `naf/`. ```bash mkdir naf && cd naf # Download NAF dataset wget https://github.com/herobd/NAF_dataset/releases/download/v1.0/labeled_images.tar.gz tar -zxf labeled_images.tar.gz # For images mkdir annotations && mv labeled_images imgs # For annotations git clone https://github.com/herobd/NAF_dataset.git mv NAF_dataset/train_valid_test_split.json annotations/ && mv NAF_dataset/groups annotations/ rm -rf NAF_dataset && rm labeled_images.tar.gz ``` - Step2: Generate `train_label.txt`, `val_label.txt`, and `test_label.txt` with following command: ```bash # Add --preserve-vertical to preserve vertical texts for training, otherwise # vertical images will be filtered and stored in PATH/TO/naf/ignores python tools/data/textrecog/naf_converter.py PATH/TO/naf --nproc 4 - After running the above codes, the directory structure should be as follows: ```text ├── naf │ ├── crops │ ├── train_label.txt │ ├── val_label.txt │ └── test_label.txt ``` ## SROIE - Step1: Step1: Download `0325updated.task1train(626p).zip`, `task1&2_test(361p).zip`, and `text.task1&2-test(361p).zip` from [homepage](https://rrc.cvc.uab.es/?ch=13&com=downloads) to `sroie/` - Step2: ```bash mkdir sroie && cd sroie mkdir imgs && mkdir annotations && mkdir imgs/training # Warnninig: The zip files downloaded from Google Drive and BaiduYun Cloud may # be different, the user should revise the following commands to the correct # file name if encounter with errors while extracting and move the files. unzip -q 0325updated.task1train\(626p\).zip && unzip -q task1\&2_test\(361p\).zip && unzip -q text.task1\&2-test(361p\).zip # For images mv 0325updated.task1train\(626p\)/*.jpg imgs/training && mv fulltext_test\(361p\) imgs/test # For annotations mv 0325updated.task1train\(626p\) annotations/training && mv text.task1\&2-testги361p\)/ annotations/test rm 0325updated.task1train\(626p\).zip && rm task1\&2_test\(361p\).zip && rm text.task1\&2-test(361p\).zip ``` - Step3: Generate `train_label.jsonl` and `test_label.jsonl` and crop images using 4 processes with the following command: ```bash python tools/data/textrecog/sroie_converter.py PATH/TO/sroie --nproc 4 ``` - After running the above codes, the directory structure should be as follows: ```text ├── sroie │ ├── crops │ ├── train_label.jsonl │ └── test_label.jsonl ``` ## Lecture Video DB ```{note} The LV dataset has already provided cropped images and the corresponding annotations ``` - Step1: Download [IIIT-CVid.zip](http://cdn.iiit.ac.in/cdn/preon.iiit.ac.in/~kartik/IIIT-CVid.zip) to `lv/`. ```bash mkdir lv && cd lv # Download LV dataset wget http://cdn.iiit.ac.in/cdn/preon.iiit.ac.in/~kartik/IIIT-CVid.zip unzip -q IIIT-CVid.zip # For image mv IIIT-CVid/Crops ./ # For annotation mv IIIT-CVid/train.txt train_label.txt && mv IIIT-CVid/val.txt val_label.txt && mv IIIT-CVid/test.txt test_label.txt rm IIIT-CVid.zip ``` - Step2: Generate `train_label.jsonl`, `val.jsonl`, and `test.jsonl` with following command: ```bash python tools/data/textdreog/lv_converter.py PATH/TO/lv ``` - After running the above codes, the directory structure should be as follows: ```text ├── lv │ ├── Crops │ ├── train_label.jsonl │ └── test_label.jsonl ``` ## LSVT - Step1: Download [train_full_images_0.tar.gz](https://dataset-bj.cdn.bcebos.com/lsvt/train_full_images_0.tar.gz), [train_full_images_1.tar.gz](https://dataset-bj.cdn.bcebos.com/lsvt/train_full_images_1.tar.gz), and [train_full_labels.json](https://dataset-bj.cdn.bcebos.com/lsvt/train_full_labels.json) to `lsvt/`. ```bash mkdir lsvt && cd lsvt # Download LSVT dataset wget https://dataset-bj.cdn.bcebos.com/lsvt/train_full_images_0.tar.gz wget https://dataset-bj.cdn.bcebos.com/lsvt/train_full_images_1.tar.gz wget https://dataset-bj.cdn.bcebos.com/lsvt/train_full_labels.json mkdir annotations tar -xf train_full_images_0.tar.gz && tar -xf train_full_images_1.tar.gz mv train_full_labels.json annotations/ && mv train_full_images_1/*.jpg train_full_images_0/ mv train_full_images_0 imgs rm train_full_images_0.tar.gz && rm train_full_images_1.tar.gz && rm -rf train_full_images_1 ``` - Step2: Generate `train_label.jsonl` and `val_label.jsonl` (optional) with the following command: ```bash # Annotations of LSVT test split is not publicly available, split a validation # set by adding --val-ratio 0.2 # Add --preserve-vertical to preserve vertical texts for training, otherwise # vertical images will be filtered and stored in PATH/TO/lsvt/ignores python tools/data/textdrecog/lsvt_converter.py PATH/TO/lsvt --nproc 4 ``` - After running the above codes, the directory structure should be as follows: ```text ├── lsvt │ ├── crops │ ├── ignores │ ├── train_label.jsonl │ └── val_label.jsonl (optional) ``` ## FUNSD - Step1: Download [dataset.zip](https://guillaumejaume.github.io/FUNSD/dataset.zip) to `funsd/`. ```bash mkdir funsd && cd funsd # Download FUNSD dataset wget https://guillaumejaume.github.io/FUNSD/dataset.zip unzip -q dataset.zip # For images mv dataset/training_data/images imgs && mv dataset/testing_data/images/* imgs/ # For annotations mkdir annotations mv dataset/training_data/annotations annotations/training && mv dataset/testing_data/annotations annotations/test rm dataset.zip && rm -rf dataset ``` - Step2: Generate `train_label.txt` and `test_label.txt` and crop images using 4 processes with following command (add `--preserve-vertical` if you wish to preserve the images containing vertical texts): ```bash python tools/data/textrecog/funsd_converter.py PATH/TO/funsd --nproc 4 ``` - After running the above codes, the directory structure should be as follows: ```text ├── funsd │ ├── imgs │ ├── dst_imgs │ ├── annotations │ ├── train_label.txt │ └── test_label.txt ``` ## IMGUR - Step1: Run `download_imgur5k.py` to download images. You can merge [PR#5](https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset/pull/5) in your local repository to enable a **much faster** parallel execution of image download. ```bash mkdir imgur && cd imgur git clone https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset.git # Download images from imgur.com. This may take SEVERAL HOURS! python ./IMGUR5K-Handwriting-Dataset/download_imgur5k.py --dataset_info_dir ./IMGUR5K-Handwriting-Dataset/dataset_info/ --output_dir ./imgs # For annotations mkdir annotations mv ./IMGUR5K-Handwriting-Dataset/dataset_info/*.json annotations rm -rf IMGUR5K-Handwriting-Dataset ``` - Step2: Generate `train_label.txt`, `val_label.txt` and `test_label.txt` and crop images with the following command: ```bash python tools/data/textrecog/imgur_converter.py PATH/TO/imgur ``` - After running the above codes, the directory structure should be as follows: ```text ├── imgur │ ├── crops │ ├── train_label.jsonl │ ├── test_label.jsonl │ └── val_label.jsonl ``` ## KAIST - Step1: Complete download [KAIST_all.zip](http://www.iapr-tc11.org/mediawiki/index.php/KAIST_Scene_Text_Database) to `kaist/`. ```bash mkdir kaist && cd kaist mkdir imgs && mkdir annotations # Download KAIST dataset wget http://www.iapr-tc11.org/dataset/KAIST_SceneText/KAIST_all.zip unzip -q KAIST_all.zip rm KAIST_all.zip ``` - Step2: Extract zips: ```bash python tools/data/common/extract_kaist.py PATH/TO/kaist ``` - Step3: Generate `train_label.jsonl` and `val_label.jsonl` (optional) with following command: ```bash # Since KAIST does not provide an official split, you can split the dataset by adding --val-ratio 0.2 # Add --preserve-vertical to preserve vertical texts for training, otherwise # vertical images will be filtered and stored in PATH/TO/kaist/ignores python tools/data/textrecog/kaist_converter.py PATH/TO/kaist --nproc 4 ``` - After running the above codes, the directory structure should be as follows: ```text ├── kaist │ ├── crops │ ├── ignores │ ├── train_label.jsonl │ └── val_label.jsonl (optional) ``` ## MTWI - Step1: Download `mtwi_2018_train.zip` from [homepage](https://tianchi.aliyun.com/competition/entrance/231685/information?lang=en-us). ```bash mkdir mtwi && cd mtwi unzip -q mtwi_2018_train.zip mv image_train imgs && mv txt_train annotations rm mtwi_2018_train.zip ``` - Step2: Generate `train_label.jsonl` and `val_label.jsonl` (optional) with the following command: ```bash # Annotations of MTWI test split is not publicly available, split a validation # set by adding --val-ratio 0.2 # Add --preserve-vertical to preserve vertical texts for training, otherwise # vertical images will be filtered and stored in PATH/TO/mtwi/ignores python tools/data/textrecog/mtwi_converter.py PATH/TO/mtwi --nproc 4 ``` - After running the above codes, the directory structure should be as follows: ```text ├── mtwi │ ├── crops │ ├── train_label.jsonl │ └── val_label.jsonl (optional) ``` ## COCO Text v2 - Step1: Download image [train2014.zip](http://images.cocodataset.org/zips/train2014.zip) and annotation [cocotext.v2.zip](https://github.com/bgshih/cocotext/releases/download/dl/cocotext.v2.zip) to `coco_textv2/`. ```bash mkdir coco_textv2 && cd coco_textv2 mkdir annotations # Download COCO Text v2 dataset wget http://images.cocodataset.org/zips/train2014.zip wget https://github.com/bgshih/cocotext/releases/download/dl/cocotext.v2.zip unzip -q train2014.zip && unzip -q cocotext.v2.zip mv train2014 imgs && mv cocotext.v2.json annotations/ rm train2014.zip && rm -rf cocotext.v2.zip ``` - Step2: Generate `train_label.jsonl` and `val_label.jsonl` with the following command: ```bash # Add --preserve-vertical to preserve vertical texts for training, otherwise # vertical images will be filtered and stored in PATH/TO/mtwi/ignores python tools/data/textrecog/cocotext_converter.py PATH/TO/coco_textv2 --nproc 4 ``` - After running the above codes, the directory structure should be as follows: ```text ├── coco_textv2 │ ├── crops │ ├── ignores │ ├── train_label.jsonl │ └── val_label.jsonl ``` ## ReCTS - Step1: Download [ReCTS.zip](https://datasets.cvc.uab.es/rrc/ReCTS.zip) to `rects/` from the [homepage](https://rrc.cvc.uab.es/?ch=12&com=downloads). ```bash mkdir rects && cd rects # Download ReCTS dataset # You can also find Google Drive link on the dataset homepage wget https://datasets.cvc.uab.es/rrc/ReCTS.zip --no-check-certificate unzip -q ReCTS.zip mv img imgs && mv gt_unicode annotations rm ReCTS.zip -f && rm -rf gt ``` - Step2: Generate `train_label.jsonl` and `val_label.jsonl` (optional) with the following command: ```bash # Annotations of ReCTS test split is not publicly available, split a validation # set by adding --val-ratio 0.2 # Add --preserve-vertical to preserve vertical texts for training, otherwise # vertical images will be filtered and stored in PATH/TO/rects/ignores python tools/data/textrecog/rects_converter.py PATH/TO/rects --nproc 4 ``` - After running the above codes, the directory structure should be as follows: ```text ├── rects │ ├── crops │ ├── ignores │ ├── train_label.jsonl │ └── val_label.jsonl (optional) ``` ## ILST - Step1: Download `IIIT-ILST.zip` from [onedrive link](https://iiitaphyd-my.sharepoint.com/:f:/g/personal/minesh_mathew_research_iiit_ac_in/EtLvCozBgaBIoqglF4M-lHABMgNcCDW9rJYKKWpeSQEElQ?e=zToXZP) - Step2: Run the following commands ```bash unzip -q IIIT-ILST.zip && rm IIIT-ILST.zip cd IIIT-ILST # rename files cd Devanagari && for i in `ls`; do mv -f $i `echo "devanagari_"$i`; done && cd .. cd Malayalam && for i in `ls`; do mv -f $i `echo "malayalam_"$i`; done && cd .. cd Telugu && for i in `ls`; do mv -f $i `echo "telugu_"$i`; done && cd .. # transfer image path mkdir imgs && mkdir annotations mv Malayalam/{*jpg,*jpeg} imgs/ && mv Malayalam/*xml annotations/ mv Devanagari/*jpg imgs/ && mv Devanagari/*xml annotations/ mv Telugu/*jpeg imgs/ && mv Telugu/*xml annotations/ # remove unnecessary files rm -rf Devanagari && rm -rf Malayalam && rm -rf Telugu && rm -rf README.txt ``` - Step3: Generate `train_label.jsonl` and `val_label.jsonl` (optional) and crop images using 4 processes with the following command (add `--preserve-vertical` if you wish to preserve the images containing vertical texts). Since the original dataset doesn't have a validation set, you may specify `--val-ratio` to split the dataset. E.g., if val-ratio is 0.2, then 20% of the data are left out as the validation set in this example. ```bash python tools/data/textrecog/ilst_converter.py PATH/TO/IIIT-ILST --nproc 4 ``` - After running the above codes, the directory structure should be as follows: ```text ├── IIIT-ILST │ ├── crops │ ├── ignores │ ├── train_label.jsonl │ └── val_label.jsonl (optional) ``` ## VinText - Step1: Download [vintext.zip](https://drive.google.com/drive/my-drive) to `vintext` ```bash mkdir vintext && cd vintext # Download dataset from google drive wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1UUQhNvzgpZy7zXBFQp0Qox-BBjunZ0ml' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1UUQhNvzgpZy7zXBFQp0Qox-BBjunZ0ml" -O vintext.zip && rm -rf /tmp/cookies.txt # Extract images and annotations unzip -q vintext.zip && rm vintext.zip mv vietnamese/labels ./ && mv vietnamese/test_image ./ && mv vietnamese/train_images ./ && mv vietnamese/unseen_test_images ./ rm -rf vietnamese # Rename files mv labels annotations && mv test_image test && mv train_images training && mv unseen_test_images unseen_test mkdir imgs mv training imgs/ && mv test imgs/ && mv unseen_test imgs/ ``` - Step2: Generate `train_label.jsonl`, `test_label.jsonl`, `unseen_test_label.jsonl`, and crop images using 4 processes with the following command (add `--preserve-vertical` if you wish to preserve the images containing vertical texts). ```bash python tools/data/textrecog/vintext_converter.py PATH/TO/vietnamese --nproc 4 ``` - After running the above codes, the directory structure should be as follows: ```text ├── vintext │ ├── crops │ ├── ignores │ ├── train_label.jsonl │ ├── test_label.jsonl │ └── unseen_test_label.jsonl ``` ## BID - Step1: Download [BID Dataset.zip](https://drive.google.com/file/d/1Oi88TRcpdjZmJ79WDLb9qFlBNG8q2De6/view) - Step2: Run the following commands to preprocess the dataset ```bash # Rename mv BID\ Dataset.zip BID_Dataset.zip # Unzip and Rename unzip -q BID_Dataset.zip && rm BID_Dataset.zip mv BID\ Dataset BID # The BID dataset has a problem of permission, and you may # add permission for this file chmod -R 777 BID cd BID mkdir imgs && mkdir annotations # For images and annotations mv CNH_Aberta/*in.jpg imgs && mv CNH_Aberta/*txt annotations && rm -rf CNH_Aberta mv CNH_Frente/*in.jpg imgs && mv CNH_Frente/*txt annotations && rm -rf CNH_Frente mv CNH_Verso/*in.jpg imgs && mv CNH_Verso/*txt annotations && rm -rf CNH_Verso mv CPF_Frente/*in.jpg imgs && mv CPF_Frente/*txt annotations && rm -rf CPF_Frente mv CPF_Verso/*in.jpg imgs && mv CPF_Verso/*txt annotations && rm -rf CPF_Verso mv RG_Aberto/*in.jpg imgs && mv RG_Aberto/*txt annotations && rm -rf RG_Aberto mv RG_Frente/*in.jpg imgs && mv RG_Frente/*txt annotations && rm -rf RG_Frente mv RG_Verso/*in.jpg imgs && mv RG_Verso/*txt annotations && rm -rf RG_Verso # Remove unnecessary files rm -rf desktop.ini ``` - Step3: Generate `train_label.jsonl` and `val_label.jsonl` (optional) and crop images using 4 processes with the following command (add `--preserve-vertical` if you wish to preserve the images containing vertical texts). Since the original dataset doesn't have a validation set, you may specify `--val-ratio` to split the dataset. E.g., if test-ratio is 0.2, then 20% of the data are left out as the validation set in this example. ```bash python tools/data/textrecog/bid_converter.py dPATH/TO/BID --nproc 4 ``` - After running the above codes, the directory structure should be as follows: ```text ├── BID │ ├── crops │ ├── ignores │ ├── train_label.jsonl │ └── val_label.jsonl (optional) ``` ## RCTW - Step1: Download `train_images.zip.001`, `train_images.zip.002`, and `train_gts.zip` from the [homepage](https://rctw.vlrlab.net/dataset.html), extract the zips to `rctw/imgs` and `rctw/annotations`, respectively. - Step2: Generate `train_label.jsonl` and `val_label.jsonl` (optional). Since the original dataset doesn't have a validation set, you may specify `--val-ratio` to split the dataset. E.g., if val-ratio is 0.2, then 20% of the data are left out as the validation set in this example. ```bash # Annotations of RCTW test split is not publicly available, split a validation set by adding --val-ratio 0.2 # Add --preserve-vertical to preserve vertical texts for training, otherwise vertical images will be filtered and stored in PATH/TO/rctw/ignores python tools/data/textrecog/rctw_converter.py PATH/TO/rctw --nproc 4 ``` - After running the above codes, the directory structure should be as follows: ```text │── rctw │   ├── crops │   ├── ignores │   ├── train_label.jsonl │   └── val_label.jsonl (optional) ``` ## HierText - Step1 (optional): Install [AWS CLI](https://mmocr.readthedocs.io/en/latest/datasets/recog.html#install-aws-cli-optional). - Step2: Clone [HierText](https://github.com/google-research-datasets/hiertext) repo to get annotations ```bash mkdir HierText git clone https://github.com/google-research-datasets/hiertext.git ``` - Step3: Download `train.tgz`, `validation.tgz` from aws ```bash aws s3 --no-sign-request cp s3://open-images-dataset/ocr/train.tgz . aws s3 --no-sign-request cp s3://open-images-dataset/ocr/validation.tgz . ``` - Step4: Process raw data ```bash # process annotations mv hiertext/gt ./ rm -rf hiertext mv gt annotations gzip -d annotations/train.jsonl.gz gzip -d annotations/validation.jsonl.gz # process images mkdir imgs mv train.tgz imgs/ mv validation.tgz imgs/ tar -xzvf imgs/train.tgz tar -xzvf imgs/validation.tgz ``` - Step5: Generate `train_label.jsonl` and `val_label.jsonl`. HierText includes different levels of annotation, including `paragraph`, `line`, and `word`. Check the original [paper](https://arxiv.org/pdf/2203.15143.pdf) for details. E.g. set `--level paragraph` to get paragraph-level annotation. Set `--level line` to get line-level annotation. set `--level word` to get word-level annotation. ```bash # Collect word annotation from HierText --level word # Add --preserve-vertical to preserve vertical texts for training, otherwise vertical images will be filtered and stored in PATH/TO/HierText/ignores python tools/data/textrecog/hiertext_converter.py PATH/TO/HierText --level word --nproc 4 ``` - After running the above codes, the directory structure should be as follows: ```text │── HierText │   ├── crops │   ├── ignores │   ├── train_label.jsonl │   └── val_label.jsonl ``` ## ArT - Step1: Download `train_images.tar.gz`, and `train_labels.json` from the [homepage](https://rrc.cvc.uab.es/?ch=14&com=downloads) to `art/` ```bash mkdir art && cd art mkdir annotations # Download ArT dataset wget https://dataset-bj.cdn.bcebos.com/art/train_task2_images.tar.gz wget https://dataset-bj.cdn.bcebos.com/art/train_task2_labels.json # Extract tar -xf train_task2_images.tar.gz mv train_task2_images crops mv train_task2_labels.json annotations/ # Remove unnecessary files rm train_images.tar.gz ``` - Step2: Generate `train_label.jsonl` and `val_label.jsonl` (optional). Since the test annotations are not publicly available, you may specify `--val-ratio` to split the dataset. E.g., if val-ratio is 0.2, then 20% of the data are left out as the validation set in this example. ```bash # Annotations of ArT test split is not publicly available, split a validation set by adding --val-ratio 0.2 python tools/data/textrecog/art_converter.py PATH/TO/art ``` - After running the above codes, the directory structure should be as follows: ```text │── art │   ├── crops │   ├── train_label.jsonl │   └── val_label.jsonl (optional) ```