import torch from mmocr.models.textrecog.layers import (BasicBlock, Bottleneck, PositionalEncoding, TransformerDecoderLayer, get_pad_mask, get_subsequent_mask) from mmocr.models.textrecog.layers.conv_layer import conv3x3 def test_conv_layer(): conv3by3 = conv3x3(3, 6) assert conv3by3.in_channels == 3 assert conv3by3.out_channels == 6 assert conv3by3.kernel_size == (3, 3) x = torch.rand(1, 64, 224, 224) # test basic block basic_block = BasicBlock(64, 64) assert basic_block.expansion == 1 out = basic_block(x) assert out.shape == torch.Size([1, 64, 224, 224]) # test bottle neck bottle_neck = Bottleneck(64, 64, downsample=True) assert bottle_neck.expansion == 4 out = bottle_neck(x) assert out.shape == torch.Size([1, 256, 224, 224]) def test_transformer_layer(): # test decoder_layer decoder_layer = TransformerDecoderLayer() in_dec = torch.rand(1, 30, 512) out_enc = torch.rand(1, 128, 512) out_dec = decoder_layer(in_dec, out_enc) assert out_dec.shape == torch.Size([1, 30, 512]) # test positional_encoding pos_encoder = PositionalEncoding() x = torch.rand(1, 30, 512) out = pos_encoder(x) assert out.size() == x.size() # test get pad mask seq = torch.rand(1, 30) pad_idx = 0 out = get_pad_mask(seq, pad_idx) assert out.shape == torch.Size([1, 1, 30]) # test get_subsequent_mask out_mask = get_subsequent_mask(seq) assert out_mask.shape == torch.Size([1, 30, 30])