import argparse import json import os.path as osp import time import lmdb import mmcv import numpy as np from scipy.io import loadmat from shapely.geometry import Polygon from mmocr.utils import check_argument def trace_boundary(char_boxes): """Trace the boundary point of text. Args: char_boxes (list[ndarray]): The char boxes for one text. Each element is 4x2 ndarray. Returns: boundary (ndarray): The boundary point sets with size nx2. """ assert check_argument.is_type_list(char_boxes, np.ndarray) # from top left to to right p_top = [box[0:2] for box in char_boxes] # from bottom right to bottom left p_bottom = [ char_boxes[idx][[2, 3], :] for idx in range(len(char_boxes) - 1, -1, -1) ] p = p_top + p_bottom boundary = np.concatenate(p).astype(int) return boundary def match_bbox_char_str(bboxes, char_bboxes, strs): """match the bboxes, char bboxes, and strs. Args: bboxes (ndarray): The text boxes of size (2, 4, num_box). char_bboxes (ndarray): The char boxes of size (2, 4, num_char_box). strs (ndarray): The string of size (num_strs,) """ assert isinstance(bboxes, np.ndarray) assert isinstance(char_bboxes, np.ndarray) assert isinstance(strs, np.ndarray) bboxes = bboxes.astype(np.int32) char_bboxes = char_bboxes.astype(np.int32) if len(char_bboxes.shape) == 2: char_bboxes = np.expand_dims(char_bboxes, axis=2) char_bboxes = np.transpose(char_bboxes, (2, 1, 0)) if len(bboxes.shape) == 2: bboxes = np.expand_dims(bboxes, axis=2) bboxes = np.transpose(bboxes, (2, 1, 0)) chars = ''.join(strs).replace('\n', '').replace(' ', '') num_boxes = bboxes.shape[0] poly_list = [Polygon(bboxes[iter]) for iter in range(num_boxes)] poly_box_list = [bboxes[iter] for iter in range(num_boxes)] poly_char_list = [[] for iter in range(num_boxes)] poly_char_idx_list = [[] for iter in range(num_boxes)] poly_charbox_list = [[] for iter in range(num_boxes)] words = [] for s in strs: words += s.split() words_len = [len(w) for w in words] words_end_inx = np.cumsum(words_len) start_inx = 0 for word_inx, end_inx in enumerate(words_end_inx): for char_inx in range(start_inx, end_inx): poly_char_idx_list[word_inx].append(char_inx) poly_char_list[word_inx].append(chars[char_inx]) poly_charbox_list[word_inx].append(char_bboxes[char_inx]) start_inx = end_inx for box_inx in range(num_boxes): assert len(poly_charbox_list[box_inx]) > 0 poly_boundary_list = [] for item in poly_charbox_list: boundary = np.ndarray((0, 2)) if len(item) > 0: boundary = trace_boundary(item) poly_boundary_list.append(boundary) return (poly_list, poly_box_list, poly_boundary_list, poly_charbox_list, poly_char_idx_list, poly_char_list) def convert_annotations(root_path, gt_name, lmdb_name): """Convert the annotation into lmdb dataset. Args: root_path (str): The root path of dataset. gt_name (str): The ground truth filename. lmdb_name (str): The output lmdb filename. """ assert isinstance(root_path, str) assert isinstance(gt_name, str) assert isinstance(lmdb_name, str) start_time = time.time() gt = loadmat(gt_name) img_num = len(gt['imnames'][0]) env = lmdb.open(lmdb_name, map_size=int(1e9 * 40)) with env.begin(write=True) as txn: for img_id in range(img_num): if img_id % 1000 == 0 and img_id > 0: total_time_sec = time.time() - start_time avg_time_sec = total_time_sec / img_id eta_mins = (avg_time_sec * (img_num - img_id)) / 60 print(f'\ncurrent_img/total_imgs {img_id}/{img_num} | ' f'eta: {eta_mins:.3f} mins') # for each img img_file = osp.join(root_path, 'imgs', gt['imnames'][0][img_id][0]) img = mmcv.imread(img_file, 'unchanged') height, width = img.shape[0:2] img_json = {} img_json['file_name'] = gt['imnames'][0][img_id][0] img_json['height'] = height img_json['width'] = width img_json['annotations'] = [] wordBB = gt['wordBB'][0][img_id] charBB = gt['charBB'][0][img_id] txt = gt['txt'][0][img_id] poly_list, _, poly_boundary_list, _, _, _ = match_bbox_char_str( wordBB, charBB, txt) for poly_inx in range(len(poly_list)): polygon = poly_list[poly_inx] min_x, min_y, max_x, max_y = polygon.bounds bbox = [min_x, min_y, max_x - min_x, max_y - min_y] anno_info = dict() anno_info['iscrowd'] = 0 anno_info['category_id'] = 1 anno_info['bbox'] = bbox anno_info['segmentation'] = [ poly_boundary_list[poly_inx].flatten().tolist() ] img_json['annotations'].append(anno_info) string = json.dumps(img_json) txn.put(str(img_id).encode('utf8'), string.encode('utf8')) key = 'total_number'.encode('utf8') value = str(img_num).encode('utf8') txn.put(key, value) def parse_args(): parser = argparse.ArgumentParser( description='Convert synthtext to lmdb dataset') parser.add_argument('synthtext_path', help='synthetic root path') parser.add_argument('-o', '--out-dir', help='output path') args = parser.parse_args() return args def main(): args = parse_args() synthtext_path = args.synthtext_path out_dir = args.out_dir if args.out_dir else synthtext_path mmcv.mkdir_or_exist(out_dir) gt_name = osp.join(synthtext_path, 'gt.mat') lmdb_name = 'synthtext.lmdb' convert_annotations(synthtext_path, gt_name, osp.join(out_dir, lmdb_name)) if __name__ == '__main__': main()