# Testing We introduce the way to test pretrained models on datasets here. ## Testing on a Single GPU You can use `tools/test.py` to perform single CPU/GPU inference. For example, to evaluate DBNet on IC15: (You can download pretrained models from [Model Zoo](modelzoo.md)): ```shell ./tools/dist_test.sh configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597.pth --eval hmean-iou ``` And here is the full usage of the script: ```shell python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [ARGS] ``` ````{note} By default, MMOCR prefers GPU(s) to CPU. If you want to test a model on CPU, please empty `CUDA_VISIBLE_DEVICES` or set it to -1 to make GPU(s) invisible to the program. Note that running CPU tests requires **MMCV >= 1.4.4**. ```bash CUDA_VISIBLE_DEVICES= python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [ARGS] ``` ```` | ARGS | Type | Description | | ------------------ | -------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------ | | `--out` | str | Output result file in pickle format. | | `--fuse-conv-bn` | bool | Path to the custom config of the selected det model. | | `--format-only` | bool | Format the output results without performing evaluation. It is useful when you want to format the results to a specific format and submit them to the test server. | | `--gpu-id` | int | GPU id to use. Only applicable to non-distributed training. | | `--eval` | 'hmean-ic13', 'hmean-iou', 'acc', 'macro-f1' | The evaluation metrics. Options: 'hmean-ic13', 'hmean-iou' for text detection tasks, 'acc' for text recognition tasks, and 'macro-f1' for key information extraction tasks. | | `--show` | bool | Whether to show results. | | `--show-dir` | str | Directory where the output images will be saved. | | `--show-score-thr` | float | Score threshold (default: 0.3). | | `--gpu-collect` | bool | Whether to use gpu to collect results. | | `--tmpdir` | str | The tmp directory used for collecting results from multiple workers, available when gpu-collect is not specified. | | `--cfg-options` | str | Override some settings in the used config, the key-value pair in xxx=yyy format will be merged into the config file. If the value to be overwritten is a list, it should be of the form of either key="\[a,b\]" or key=a,b. The argument also allows nested list/tuple values, e.g. key="\[(a,b),(c,d)\]". Note that the quotation marks are necessary and that no white space is allowed. | | `--eval-options` | str | Custom options for evaluation, the key-value pair in xxx=yyy format will be kwargs for dataset.evaluate() function. | | `--launcher` | 'none', 'pytorch', 'slurm', 'mpi' | Options for job launcher. | ## Testing on Multiple GPUs MMOCR implements **distributed** testing with `MMDistributedDataParallel`. You can use the following command to test a dataset with multiple GPUs. ```shell [PORT={PORT}] ./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [PY_ARGS] ``` | Arguments | Type | Description | | ----------------- | ---- | -------------------------------------------------------------------------------- | | `PORT` | int | The master port that will be used by the machine with rank 0. Defaults to 29500. | | `CONFIG_FILE` | str | The path to config. | | `CHECKPOINT_FILE` | str | The path to the checkpoint. | | `GPU_NUM` | int | The number of GPUs to be used per node. Defaults to 8. | | `PY_ARGS` | str | Arguments to be parsed by `tools/test.py`. | For example, ```shell ./tools/dist_test.sh configs/example_config.py work_dirs/example_exp/example_model_20200202.pth 1 --eval hmean-iou ``` ## Testing on Multiple Machines You can launch a task on multiple machines connected to the same network. ```shell NNODES=${NNODES} NODE_RANK=${NODE_RANK} PORT=${MASTER_PORT} MASTER_ADDR=${MASTER_ADDR} ./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [PY_ARGS] ``` | Arguments | Type | Description | | ----------------- | ---- | -------------------------------------------------------------------- | | `NNODES` | int | The number of nodes. | | `NODE_RANK` | int | The rank of current node. | | `PORT` | int | The master port that will be used by rank 0 node. Defaults to 29500. | | `MASTER_ADDR` | str | The address of rank 0 node. Defaults to "127.0.0.1". | | `CONFIG_FILE` | str | The path to config. | | `CHECKPOINT_FILE` | str | The path to the checkpoint. | | `GPU_NUM` | int | The number of GPUs to be used per node. Defaults to 8. | | `PY_ARGS` | str | Arguments to be parsed by `tools/test.py`. | ```{note} MMOCR relies on torch.distributed package for distributed testing. Find more information at PyTorch’s [launch utility](https://pytorch.org/docs/stable/distributed.html#launch-utility). ``` Say that you want to launch a job on two machines. On the first machine: ```shell NNODES=2 NODE_RANK=0 PORT=${MASTER_PORT} MASTER_ADDR=${MASTER_ADDR} ./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [PY_ARGS] ``` On the second machine: ```shell NNODES=2 NODE_RANK=1 PORT=${MASTER_PORT} MASTER_ADDR=${MASTER_ADDR} ./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [PY_ARGS] ``` ```{note} The speed of the network could be the bottleneck of testing. ``` ## Testing with Slurm If you run MMOCR on a cluster managed with [Slurm](https://slurm.schedmd.com/), you can use the script `tools/slurm_test.sh`. ```shell [GPUS=${GPUS}] [GPUS_PER_NODE=${GPUS_PER_NODE}] [SRUN_ARGS=${SRUN_ARGS}] ./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${CHECKPOINT_FILE} [PY_ARGS] ``` | Arguments | Type | Description | | --------------- | ---- | ----------------------------------------------------------------------------------------------------------- | | `GPUS` | int | The number of GPUs to be used by this task. Defaults to 8. | | `GPUS_PER_NODE` | int | The number of GPUs to be allocated per node. Defaults to 8. | | `SRUN_ARGS` | str | Arguments to be parsed by srun. Available options can be found [here](https://slurm.schedmd.com/srun.html). | | `PY_ARGS` | str | Arguments to be parsed by `tools/test.py`. | Here is an example of using 8 GPUs to test an example model on the 'dev' partition with job name 'test_job'. ```shell GPUS=8 ./tools/slurm_test.sh dev test_job configs/example_config.py work_dirs/example_exp/example_model_20200202.pth --eval hmean-iou ``` ## Batch Testing By default, MMOCR tests the model image by image. For faster inference, you may change `data.val_dataloader.samples_per_gpu` and `data.test_dataloader.samples_per_gpu` in the config. For example, ```python data = dict( ... val_dataloader=dict(samples_per_gpu=16), test_dataloader=dict(samples_per_gpu=16), ... ) ``` will test the model with 16 images in a batch. ```{warning} Batch testing may incur performance decrease of the model due to the different behavior of the data preprocessing pipeline. ```