# The transcription of NAF dataset is annotated from Tessaract OCR, which is # not accurate. The test/valid set ones were hand corrected, but the train set # was only hand corrected a little. They aren't very good results. Better # not to use them for recognition and text spotting. _base_ = ['textdet.py'] data_root = 'data/naf' data_converter = dict( type='TextRecogCropConverter', parser=dict( type='NAFAnnParser', data_root=data_root, ignore=['¿', '§'], det=False), delete=['temp_images', 'naf_anno', 'data_split.json', 'annotations']) config_generator = dict( type='TextRecogConfigGenerator', data_root=data_root, val_anns=[dict(ann_file='textrecog_val.json', dataset_postfix='')])