import os import pytest from mmcv.image import imread from mmdet.apis import init_detector from mmocr.apis.inference import model_inference from mmocr.datasets import build_dataset # noqa: F401 from mmocr.models import build_detector # noqa: F401 def build_model(config_file): device = 'cpu' model = init_detector(config_file, checkpoint=None, device=device) if model.cfg.data.test['type'] == 'ConcatDataset': model.cfg.data.test.pipeline = model.cfg.data.test['datasets'][ 0].pipeline return model def disable_aug_test(model): model.cfg.data.test.pipeline = [ model.cfg.data.test.pipeline[0], *model.cfg.data.test.pipeline[1].transforms ] return model @pytest.mark.parametrize('cfg_file', [ '../configs/textrecog/sar/sar_r31_parallel_decoder_academic.py', '../configs/textrecog/crnn/crnn_academic_dataset.py', '../configs/textrecog/nrtr/nrtr_r31_1by16_1by8_academic.py', '../configs/textrecog/robust_scanner/robustscanner_r31_academic.py', '../configs/textrecog/seg/seg_r31_1by16_fpnocr_academic.py', '../configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2017.py' ]) def test_model_inference(cfg_file): tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) config_file = os.path.join(tmp_dir, cfg_file) model = build_model(config_file) with pytest.raises(AssertionError): model_inference(model, 1) sample_img_path = os.path.join(tmp_dir, '../demo/demo_text_det.jpg') model_inference(model, sample_img_path) # numpy inference img = imread(sample_img_path) model_inference(model, img) @pytest.mark.parametrize('cfg_file', [ '../configs/textrecog/crnn/crnn_academic_dataset.py', '../configs/textrecog/seg/seg_r31_1by16_fpnocr_academic.py' ]) def test_model_batch_inference(cfg_file): tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) config_file = os.path.join(tmp_dir, cfg_file) model = build_model(config_file) sample_img_path = os.path.join(tmp_dir, '../demo/demo_text_det.jpg') results = model_inference(model, [sample_img_path, sample_img_path]) assert len(results) == 2 # numpy inference img = imread(sample_img_path) results = model_inference(model, [img, img]) assert len(results) == 2 @pytest.mark.parametrize('cfg_file', [ '../configs/textrecog/sar/sar_r31_parallel_decoder_academic.py', '../configs/textrecog/nrtr/nrtr_r31_1by16_1by8_academic.py', '../configs/textrecog/robust_scanner/robustscanner_r31_academic.py', ]) def test_model_batch_inference_raises_assertion_error_if_unsupported(cfg_file): tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) config_file = os.path.join(tmp_dir, cfg_file) model = build_model(config_file) with pytest.raises( AssertionError, match='aug test does not support inference with batch size'): sample_img_path = os.path.join(tmp_dir, '../demo/demo_text_det.jpg') model_inference(model, [sample_img_path, sample_img_path]) with pytest.raises( AssertionError, match='aug test does not support inference with batch size'): img = imread(sample_img_path) model_inference(model, [img, img]) @pytest.mark.parametrize('cfg_file', [ '../configs/textrecog/sar/sar_r31_parallel_decoder_academic.py', '../configs/textrecog/nrtr/nrtr_r31_1by16_1by8_academic.py', '../configs/textrecog/robust_scanner/robustscanner_r31_academic.py', ]) def test_model_batch_inference_recog(cfg_file): tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) config_file = os.path.join(tmp_dir, cfg_file) model = build_model(config_file) model = disable_aug_test(model) sample_img_path = os.path.join(tmp_dir, '../demo/demo_text_det.jpg') results = model_inference(model, [sample_img_path, sample_img_path]) assert len(results) == 2 # numpy inference img = imread(sample_img_path) results = model_inference(model, [img, img]) assert len(results) == 2