_base_ = [ '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_sgd_1200e.py', '../../_base_/det_models/dbnet_r18_fpnc.py', ] default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=20), ) train_pipeline_r18 = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True, ), dict( type='TorchVisionWrapper', op='ColorJitter', brightness=32.0 / 255, saturation=0.5), dict( type='ImgAugWrapper', args=[['Fliplr', 0.5], dict(cls='Affine', rotate=[-10, 10]), ['Resize', [0.5, 3.0]]]), dict(type='RandomCrop', min_side_ratio=0.1), dict(type='Resize', scale=(640, 640), keep_ratio=True), dict(type='Pad', size=(640, 640)), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape')) ] test_pipeline_1333_736 = [ dict(type='LoadImageFromFile', color_type='color_ignore_orientation'), dict(type='Resize', scale=(1333, 736), keep_ratio=True), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor', 'instances')) ] dataset_type = 'OCRDataset' data_root = 'data/icdar2015' train_dataset = dict( type=dataset_type, data_root=data_root, ann_file='instances_training.json', data_prefix=dict(img_path='imgs/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline_r18) test_dataset = dict( type=dataset_type, data_root=data_root, ann_file='instances_test.json', data_prefix=dict(img_path='imgs/'), test_mode=True, pipeline=test_pipeline_1333_736) train_dataloader = dict( batch_size=16, num_workers=8, persistent_workers=False, sampler=dict(type='DefaultSampler', shuffle=True), dataset=train_dataset) val_dataloader = dict( batch_size=16, num_workers=8, persistent_workers=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=test_dataset) test_dataloader = val_dataloader val_evaluator = dict(type='HmeanIOUMetric') test_evaluator = val_evaluator visualizer = dict(type='TextDetLocalVisualizer', name='visualizer')