# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import mmocr.datasets.pipelines.dbnet_transforms as transforms def test_eastrandomcrop(): crop = transforms.EastRandomCrop(target_size=(60, 60), max_tries=100) img = np.random.rand(3, 100, 200) poly = np.array([[[0, 0, 50, 0, 50, 50, 0, 50]], [[20, 20, 50, 20, 50, 50, 20, 50]]]) box = np.array([[0, 0, 50, 50], [20, 20, 50, 50]]) results = dict(img=img, gt_masks=poly, bboxes=box) results['mask_fields'] = ['gt_masks'] results['bbox_fields'] = ['bboxes'] results = crop(results) assert np.allclose(results['bboxes'][0], results['gt_masks'].masks[0][0][[0, 2]].flatten())