import torch from mmocr.models.textdet.necks import FPNC def test_fpnc(): in_channels = [64, 128, 256, 512] size = [112, 56, 28, 14] for flag in [False, True]: fpnc = FPNC( in_channels=in_channels, bias_on_lateral=flag, bn_re_on_lateral=flag, bias_on_smooth=flag, bn_re_on_smooth=flag, conv_after_concat=flag) fpnc.init_weights() inputs = [] for i in range(4): inputs.append(torch.rand(1, in_channels[i], size[i], size[i])) outputs = fpnc.forward(inputs) assert list(outputs.size()) == [1, 256, 112, 112]