import math import pytest import torch from mmocr.models.textrecog.decoders import (BaseDecoder, ParallelSARDecoder, ParallelSARDecoderWithBS, SequentialSARDecoder, TFDecoder) from mmocr.models.textrecog.decoders.sar_decoder_with_bs import DecodeNode def _create_dummy_input(): feat = torch.rand(1, 512, 4, 40) out_enc = torch.rand(1, 512) tgt_dict = {'padded_targets': torch.LongTensor([[1, 1, 1, 1, 36]])} img_metas = [{'valid_ratio': 1.0}] return feat, out_enc, tgt_dict, img_metas def test_base_decoder(): decoder = BaseDecoder() with pytest.raises(NotImplementedError): decoder.forward_train(None, None, None, None) with pytest.raises(NotImplementedError): decoder.forward_test(None, None, None) def test_parallel_sar_decoder(): # test parallel sar decoder decoder = ParallelSARDecoder(num_classes=37, padding_idx=36, max_seq_len=5) decoder.init_weights() decoder.train() feat, out_enc, tgt_dict, img_metas = _create_dummy_input() with pytest.raises(AssertionError): decoder(feat, out_enc, tgt_dict, [], True) with pytest.raises(AssertionError): decoder(feat, out_enc, tgt_dict, img_metas * 2, True) out_train = decoder(feat, out_enc, tgt_dict, img_metas, True) assert out_train.shape == torch.Size([1, 5, 36]) out_test = decoder(feat, out_enc, tgt_dict, img_metas, False) assert out_test.shape == torch.Size([1, 5, 36]) def test_sequential_sar_decoder(): # test parallel sar decoder decoder = SequentialSARDecoder( num_classes=37, padding_idx=36, max_seq_len=5) decoder.init_weights() decoder.train() feat, out_enc, tgt_dict, img_metas = _create_dummy_input() with pytest.raises(AssertionError): decoder(feat, out_enc, tgt_dict, []) with pytest.raises(AssertionError): decoder(feat, out_enc, tgt_dict, img_metas * 2) out_train = decoder(feat, out_enc, tgt_dict, img_metas, True) assert out_train.shape == torch.Size([1, 5, 36]) out_test = decoder(feat, out_enc, tgt_dict, img_metas, False) assert out_test.shape == torch.Size([1, 5, 36]) def test_parallel_sar_decoder_with_beam_search(): with pytest.raises(AssertionError): ParallelSARDecoderWithBS(beam_width='beam') with pytest.raises(AssertionError): ParallelSARDecoderWithBS(beam_width=0) feat, out_enc, tgt_dict, img_metas = _create_dummy_input() decoder = ParallelSARDecoderWithBS( beam_width=1, num_classes=37, padding_idx=36, max_seq_len=5) decoder.init_weights() decoder.train() with pytest.raises(AssertionError): decoder(feat, out_enc, tgt_dict, []) with pytest.raises(AssertionError): decoder(feat, out_enc, tgt_dict, img_metas * 2) out_test = decoder(feat, out_enc, tgt_dict, img_metas, train_mode=False) assert out_test.shape == torch.Size([1, 5, 36]) # test decodenode with pytest.raises(AssertionError): DecodeNode(1, 1) with pytest.raises(AssertionError): DecodeNode([1, 2], ['4', '3']) with pytest.raises(AssertionError): DecodeNode([1, 2], [0.5]) decode_node = DecodeNode([1, 2], [0.7, 0.8]) assert math.isclose(decode_node.eval(), 1.5) def test_transformer_decoder(): decoder = TFDecoder(num_classes=37, padding_idx=36, max_seq_len=5) decoder.init_weights() decoder.train() out_enc = torch.rand(1, 128, 512) tgt_dict = {'padded_targets': torch.LongTensor([[1, 1, 1, 1, 36]])} img_metas = [{'valid_ratio': 1.0}] tgt_dict['padded_targets'] = tgt_dict['padded_targets'] out_train = decoder(None, out_enc, tgt_dict, img_metas, True) assert out_train.shape == torch.Size([1, 5, 36]) out_test = decoder(None, out_enc, tgt_dict, img_metas, False) assert out_test.shape == torch.Size([1, 5, 36])