mirror of https://github.com/open-mmlab/mmocr.git
237 lines
17 KiB
Markdown
237 lines
17 KiB
Markdown
# Datasets Preparation
|
|
|
|
This page lists the datasets which are commonly used in text detection, text recognition and key information extraction, and their download links.
|
|
|
|
<!-- TOC -->
|
|
|
|
- [Datasets Preparation](#datasets-preparation)
|
|
- [Text Detection](#text-detection)
|
|
- [Text Recognition](#text-recognition)
|
|
- [Key Information Extraction](#key-information-extraction)
|
|
|
|
<!-- /TOC -->
|
|
|
|
## Text Detection
|
|
|
|
The structure of the text detection dataset directory is organized as follows.
|
|
|
|
```text
|
|
├── ctw1500
|
|
│ ├── imgs
|
|
│ ├── instances_test.json
|
|
│ └── instances_training.json
|
|
├── icdar2015
|
|
│ ├── imgs
|
|
│ ├── instances_test.json
|
|
│ └── instances_training.json
|
|
├── icdar2017
|
|
│ ├── imgs
|
|
│ ├── instances_training.json
|
|
│ └── instances_val.json
|
|
├── synthtext
|
|
│ ├── imgs
|
|
│ └── instances_training.lmdb
|
|
```
|
|
|
|
| Dataset | Images | | | Annotation Files | |
|
|
| :-------: | :------------------------------------------------------------: | :----------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: | :-------------------------------------: | :--------------------------------------------------------------------------------------------: |
|
|
| | | | training | validation | testing | |
|
|
| CTW1500 | [homepage](https://github.com/Yuliang-Liu/Curve-Text-Detector) | | [instances_training.json](https://download.openmmlab.com/mmocr/data/ctw1500/instances_training.json) | - | [instances_test.json](https://download.openmmlab.com/mmocr/data/ctw1500/instances_test.json) |
|
|
| ICDAR2015 | [homepage](https://rrc.cvc.uab.es/?ch=4&com=downloads) | | [instances_training.json](https://download.openmmlab.com/mmocr/data/icdar2015/instances_training.json) | - | [instances_test.json](https://download.openmmlab.com/mmocr/data/icdar2015/instances_test.json) |
|
|
| ICDAR2017 | [homepage](https://rrc.cvc.uab.es/?ch=8&com=downloads) | [renamed_imgs](https://download.openmmlab.com/mmocr/data/icdar2017/renamed_imgs.tar) | [instances_training.json](https://download.openmmlab.com/mmocr/data/icdar2017/instances_training.json) | [instances_val.json](https://download.openmmlab.com/mmocr/data/icdar2017/instances_val.json) | - | | |
|
|
| Synthtext | [homepage](https://www.robots.ox.ac.uk/~vgg/data/scenetext/) | | [instances_training.lmdb](https://download.openmmlab.com/mmocr/data/synthtext/instances_training.lmdb) | - |
|
|
|
|
- For `icdar2015`:
|
|
- Step1: Download `ch4_training_images.zip` and `ch4_test_images.zip` from [homepage](https://rrc.cvc.uab.es/?ch=4&com=downloads)
|
|
- Step2: Download [instances_training.json](https://download.openmmlab.com/mmocr/data/icdar2015/instances_training.json) and [instances_test.json](https://download.openmmlab.com/mmocr/data/icdar2015/instances_test.json)
|
|
- Step3:
|
|
|
|
```bash
|
|
mkdir icdar2015 && cd icdar2015
|
|
mv /path/to/instances_training.json .
|
|
mv /path/to/instances_test.json .
|
|
|
|
mkdir imgs && cd imgs
|
|
ln -s /path/to/ch4_training_images training
|
|
ln -s /path/to/ch4_test_images test
|
|
```
|
|
|
|
- For `icdar2017`:
|
|
- To avoid the effect of rotation when load `jpg` with opencv, We provide re-saved `png` format image in [renamed_images](https://download.openmmlab.com/mmocr/data/icdar2017/renamed_imgs.tar). You can copy these images to `imgs`.
|
|
|
|
## Text Recognition
|
|
|
|
**The structure of the text recognition dataset directory is organized as follows.**
|
|
|
|
```text
|
|
├── mixture
|
|
│ ├── coco_text
|
|
│ │ ├── train_label.txt
|
|
│ │ ├── train_words
|
|
│ ├── icdar_2011
|
|
│ │ ├── training_label.txt
|
|
│ │ ├── Challenge1_Training_Task3_Images_GT
|
|
│ ├── icdar_2013
|
|
│ │ ├── train_label.txt
|
|
│ │ ├── test_label_1015.txt
|
|
│ │ ├── test_label_1095.txt
|
|
│ │ ├── Challenge2_Training_Task3_Images_GT
|
|
│ │ ├── Challenge2_Test_Task3_Images
|
|
│ ├── icdar_2015
|
|
│ │ ├── train_label.txt
|
|
│ │ ├── test_label.txt
|
|
│ │ ├── ch4_training_word_images_gt
|
|
│ │ ├── ch4_test_word_images_gt
|
|
│ ├── III5K
|
|
│ │ ├── train_label.txt
|
|
│ │ ├── test_label.txt
|
|
│ │ ├── train
|
|
│ │ ├── test
|
|
│ ├── ct80
|
|
│ │ ├── test_label.txt
|
|
│ │ ├── image
|
|
│ ├── svt
|
|
│ │ ├── test_label.txt
|
|
│ │ ├── image
|
|
│ ├── svtp
|
|
│ │ ├── test_label.txt
|
|
│ │ ├── image
|
|
│ ├── Syn90k
|
|
│ │ ├── shuffle_labels.txt
|
|
│ │ ├── label.txt
|
|
│ │ ├── label.lmdb
|
|
│ │ ├── mnt
|
|
│ ├── SynthText
|
|
│ │ ├── shuffle_labels.txt
|
|
│ │ ├── instances_train.txt
|
|
│ │ ├── label.txt
|
|
│ │ ├── label.lmdb
|
|
│ │ ├── synthtext
|
|
│ ├── SynthAdd
|
|
│ │ ├── label.txt
|
|
│ │ ├── label.lmdb
|
|
│ │ ├── SynthText_Add
|
|
```
|
|
|
|
| Dataset | images | annotation file | annotation file |
|
|
| :--------: | :-----------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------: |
|
|
| | | training | test |
|
|
| coco_text | [homepage](https://rrc.cvc.uab.es/?ch=5&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/coco_text/train_label.txt) | - | |
|
|
| icdar_2011 | [homepage](http://www.cvc.uab.es/icdar2011competition/?com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt) | - | |
|
|
| icdar_2013 | [homepage](https://rrc.cvc.uab.es/?ch=2&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/train_label.txt) | [test_label_1015.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/test_label_1015.txt) | |
|
|
| icdar_2015 | [homepage](https://rrc.cvc.uab.es/?ch=4&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt) | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/test_label.txt) | |
|
|
| IIIT5K | [homepage](http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/IIIT5K.html) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/train_label.txt) | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/test_label.txt) | |
|
|
| ct80 | - | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/ct80/test_label.txt) | |
|
|
| svt |[homepage](http://www.iapr-tc11.org/mediawiki/index.php/The_Street_View_Text_Dataset) | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svt/test_label.txt) | |
|
|
| svtp | - | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svtp/test_label.txt) | |
|
|
| Syn90k | [homepage](https://www.robots.ox.ac.uk/~vgg/data/text/) | [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/shuffle_labels.txt) \| [label.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/label.txt) | - | |
|
|
| SynthText | [homepage](https://www.robots.ox.ac.uk/~vgg/data/scenetext/) | [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/shuffle_labels.txt) \| [instances_train.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/instances_train.txt) \| [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/label.txt) | - | |
|
|
| SynthAdd | [SynthText_Add.zip](https://pan.baidu.com/s/1uV0LtoNmcxbO-0YA7Ch4dg) (code:627x) | [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthAdd/label.txt) | - | |
|
|
|
|
- For `icdar_2013`:
|
|
- Step1: Download `Challenge2_Test_Task3_Images.zip` and `Challenge2_Training_Task3_Images_GT.zip` from [homepage](https://rrc.cvc.uab.es/?ch=2&com=downloads)
|
|
- Step2: Download [test_label_1015.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/test_label_1015.txt) and [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/train_label.txt)
|
|
- For `icdar_2015`:
|
|
- Step1: Download `ch4_training_word_images_gt.zip` and `ch4_test_word_images_gt.zip` from [homepage](https://rrc.cvc.uab.es/?ch=4&com=downloads)
|
|
- Step2: Download [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt) and [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/test_label.txt)
|
|
- For `IIIT5K`:
|
|
- Step1: Download `IIIT5K-Word_V3.0.tar.gz` from [homepage](http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/IIIT5K.html)
|
|
- Step2: Download [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/train_label.txt) and [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/test_label.txt)
|
|
- For `svt`:
|
|
- Step1: Download `svt.zip` form [homepage](http://www.iapr-tc11.org/mediawiki/index.php/The_Street_View_Text_Dataset)
|
|
- Step2: Download [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svt/test_label.txt)
|
|
- Step3:
|
|
```bash
|
|
python tools/data/textrecog/svt_converter.py <download_svt_dir_path>
|
|
```
|
|
- For `ct80`:
|
|
- Step1: Download [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/ct80/test_label.txt)
|
|
- For `svtp`:
|
|
- Step1: Download [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svtp/test_label.txt)
|
|
- For `coco_text`:
|
|
- Step1: Download from [homepage](https://rrc.cvc.uab.es/?ch=5&com=downloads)
|
|
- Step2: Download [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/coco_text/train_label.txt)
|
|
- For `Syn90k`:
|
|
- Step1: Download `mjsynth.tar.gz` from [homepage](https://www.robots.ox.ac.uk/~vgg/data/text/)
|
|
- Step2: Download [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/shuffle_labels.txt)
|
|
- Step3:
|
|
|
|
```bash
|
|
mkdir Syn90k && cd Syn90k
|
|
|
|
mv /path/to/mjsynth.tar.gz .
|
|
|
|
tar -xzf mjsynth.tar.gz
|
|
|
|
mv /path/to/shuffle_labels.txt .
|
|
|
|
# create soft link
|
|
cd /path/to/mmocr/data/mixture
|
|
|
|
ln -s /path/to/Syn90k Syn90k
|
|
```
|
|
|
|
- For `SynthText`:
|
|
- Step1: Download `SynthText.zip` from [homepage](https://www.robots.ox.ac.uk/~vgg/data/scenetext/)
|
|
- Step2: Download [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/shuffle_labels.txt)
|
|
- Step3: Download [instances_train.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/instances_train.txt)
|
|
- Step4:
|
|
|
|
```bash
|
|
unzip SynthText.zip
|
|
|
|
cd SynthText
|
|
|
|
mv /path/to/shuffle_labels.txt .
|
|
|
|
# create soft link
|
|
cd /path/to/mmocr/data/mixture
|
|
|
|
ln -s /path/to/SynthText SynthText
|
|
```
|
|
|
|
- For `SynthAdd`:
|
|
- Step1: Download `SynthText_Add.zip` from [SynthAdd](https://pan.baidu.com/s/1uV0LtoNmcxbO-0YA7Ch4dg) (code:627x))
|
|
- Step2: Download [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthAdd/label.txt)
|
|
- Step3:
|
|
|
|
```bash
|
|
mkdir SynthAdd && cd SynthAdd
|
|
|
|
mv /path/to/SynthText_Add.zip .
|
|
|
|
unzip SynthText_Add.zip
|
|
|
|
mv /path/to/label.txt .
|
|
|
|
# create soft link
|
|
cd /path/to/mmocr/data/mixture
|
|
|
|
ln -s /path/to/SynthAdd SynthAdd
|
|
```
|
|
**Note:**
|
|
To convert label file with `txt` format to `lmdb` format,
|
|
```bash
|
|
python tools/data/utils/txt2lmdb.py -i <txt_label_path> -o <lmdb_label_path>
|
|
```
|
|
For example,
|
|
```bash
|
|
python tools/data/utils/txt2lmdb.py -i data/mixture/Syn90k/label.txt -o data/mixture/Syn90k/label.lmdb
|
|
```
|
|
|
|
## Key Information Extraction
|
|
|
|
The structure of the key information extraction dataset directory is organized as follows.
|
|
|
|
```text
|
|
└── wildreceipt
|
|
├── anno_files
|
|
├── class_list.txt
|
|
├── dict.txt
|
|
├── image_files
|
|
├── test.txt
|
|
└── train.txt
|
|
```
|
|
|
|
- Download [wildreceipt.tar](https://download.openmmlab.com/mmocr/data/wildreceipt.tar)
|