mmocr/configs/textdet/psenet
Tong Gao 7571763376
[Refactor] Use MMOCR's registry (#436)
* [Refactor] Use MMOCR's registry

1. Define MMOCR's registries as a child of MMDet's
2. Register all models to MMOCR's own registries
3. Modify some model configs so that some models in MMDet can be
   correctly located
4. Remove some outdated demo scripts

* add detectors
2021-08-19 19:17:15 +08:00
..
README.md Add methods to readme 2021-04-10 18:04:36 +08:00
metafile.yml update metafile (#183) 2021-05-14 00:17:33 +08:00
psenet_r50_fpnf_600e_ctw1500.py [Refactor] Use MMOCR's registry (#436) 2021-08-19 19:17:15 +08:00
psenet_r50_fpnf_600e_icdar2015.py [Refactor] Use MMOCR's registry (#436) 2021-08-19 19:17:15 +08:00
psenet_r50_fpnf_600e_icdar2017.py [Refactor] Use MMOCR's registry (#436) 2021-08-19 19:17:15 +08:00

README.md

PSENet

Introduction

[ALGORITHM]

@inproceedings{wang2019shape,
  title={Shape robust text detection with progressive scale expansion network},
  author={Wang, Wenhai and Xie, Enze and Li, Xiang and Hou, Wenbo and Lu, Tong and Yu, Gang and Shao, Shuai},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={9336--9345},
  year={2019}
}

Results and models

CTW1500

Method Backbone Extra Data Training set Test set #epochs Test size Recall Precision Hmean Download
PSENet-4s ResNet50 - CTW1500 Train CTW1500 Test 600 1280 0.728 0.849 0.784 model | log

ICDAR2015

Method Backbone Extra Data Training set Test set #epochs Test size Recall Precision Hmean Download
PSENet-4s ResNet50 - IC15 Train IC15 Test 600 2240 0.784 0.831 0.807 model | log
PSENet-4s ResNet50 pretrain on IC17 MLT model IC15 Train IC15 Test 600 2240 0.834 0.861 0.847 model | log