mirror of https://github.com/open-mmlab/mmocr.git
158 lines
4.8 KiB
Python
158 lines
4.8 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import copy
|
|
from os.path import dirname, exists, join
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
|
|
|
|
def _demo_mm_inputs(num_kernels=0, input_shape=(1, 3, 300, 300),
|
|
num_items=None): # yapf: disable
|
|
"""Create a superset of inputs needed to run test or train batches.
|
|
|
|
Args:
|
|
input_shape (tuple): Input batch dimensions.
|
|
|
|
num_items (None | list[int]): Specifies the number of boxes
|
|
for each batch item.
|
|
"""
|
|
|
|
(N, C, H, W) = input_shape
|
|
|
|
rng = np.random.RandomState(0)
|
|
|
|
imgs = rng.rand(*input_shape)
|
|
|
|
img_metas = [{
|
|
'img_shape': (H, W, C),
|
|
'ori_shape': (H, W, C),
|
|
'resize_shape': (H, W, C),
|
|
'filename': '<demo>.png',
|
|
'text': 'hello',
|
|
'valid_ratio': 1.0,
|
|
} for _ in range(N)]
|
|
|
|
mm_inputs = {
|
|
'imgs': torch.FloatTensor(imgs).requires_grad_(True),
|
|
'img_metas': img_metas
|
|
}
|
|
return mm_inputs
|
|
|
|
|
|
def _demo_gt_kernel_inputs(num_kernels=3, input_shape=(1, 3, 300, 300),
|
|
num_items=None): # yapf: disable
|
|
"""Create a superset of inputs needed to run test or train batches.
|
|
|
|
Args:
|
|
input_shape (tuple): Input batch dimensions.
|
|
|
|
num_items (None | list[int]): Specifies the number of boxes
|
|
for each batch item.
|
|
"""
|
|
from mmdet.core import BitmapMasks
|
|
|
|
(N, C, H, W) = input_shape
|
|
gt_kernels = []
|
|
|
|
for batch_idx in range(N):
|
|
kernels = []
|
|
for kernel_inx in range(num_kernels):
|
|
kernel = np.random.rand(H, W)
|
|
kernels.append(kernel)
|
|
gt_kernels.append(BitmapMasks(kernels, H, W))
|
|
|
|
return gt_kernels
|
|
|
|
|
|
def _get_config_directory():
|
|
"""Find the predefined detector config directory."""
|
|
try:
|
|
# Assume we are running in the source mmocr repo
|
|
repo_dpath = dirname(dirname(dirname(__file__)))
|
|
except NameError:
|
|
# For IPython development when this __file__ is not defined
|
|
import mmocr
|
|
repo_dpath = dirname(dirname(mmocr.__file__))
|
|
config_dpath = join(repo_dpath, 'configs')
|
|
if not exists(config_dpath):
|
|
raise Exception('Cannot find config path')
|
|
return config_dpath
|
|
|
|
|
|
def _get_config_module(fname):
|
|
"""Load a configuration as a python module."""
|
|
from mmcv import Config
|
|
config_dpath = _get_config_directory()
|
|
config_fpath = join(config_dpath, fname)
|
|
config_mod = Config.fromfile(config_fpath)
|
|
return config_mod
|
|
|
|
|
|
def _get_detector_cfg(fname):
|
|
"""Grab configs necessary to create a detector.
|
|
|
|
These are deep copied to allow for safe modification of parameters without
|
|
influencing other tests.
|
|
"""
|
|
config = _get_config_module(fname)
|
|
model = copy.deepcopy(config.model)
|
|
return model
|
|
|
|
|
|
@pytest.mark.parametrize('cfg_file', [
|
|
'textrecog/sar/sar_r31_parallel_decoder_academic.py',
|
|
'textrecog/sar/sar_r31_parallel_decoder_toy_dataset.py',
|
|
'textrecog/sar/sar_r31_sequential_decoder_academic.py',
|
|
'textrecog/crnn/crnn_toy_dataset.py',
|
|
'textrecog/crnn/crnn_academic_dataset.py',
|
|
'textrecog/nrtr/nrtr_r31_1by16_1by8_academic.py',
|
|
'textrecog/nrtr/nrtr_modality_transform_academic.py',
|
|
'textrecog/nrtr/nrtr_modality_transform_toy_dataset.py',
|
|
'textrecog/nrtr/nrtr_r31_1by8_1by4_academic.py',
|
|
'textrecog/robust_scanner/robustscanner_r31_academic.py',
|
|
'textrecog/seg/seg_r31_1by16_fpnocr_academic.py',
|
|
'textrecog/seg/seg_r31_1by16_fpnocr_toy_dataset.py',
|
|
'textrecog/satrn/satrn_academic.py', 'textrecog/satrn/satrn_small.py',
|
|
'textrecog/tps/crnn_tps_academic_dataset.py'
|
|
])
|
|
def test_recognizer_pipeline(cfg_file):
|
|
model = _get_detector_cfg(cfg_file)
|
|
model['pretrained'] = None
|
|
|
|
from mmocr.models import build_detector
|
|
detector = build_detector(model)
|
|
|
|
input_shape = (1, 3, 32, 160)
|
|
if 'crnn' in cfg_file:
|
|
input_shape = (1, 1, 32, 160)
|
|
mm_inputs = _demo_mm_inputs(0, input_shape)
|
|
gt_kernels = None
|
|
if 'seg' in cfg_file:
|
|
gt_kernels = _demo_gt_kernel_inputs(3, input_shape)
|
|
|
|
imgs = mm_inputs.pop('imgs')
|
|
img_metas = mm_inputs.pop('img_metas')
|
|
|
|
# Test forward train
|
|
if 'seg' in cfg_file:
|
|
losses = detector.forward(imgs, img_metas, gt_kernels=gt_kernels)
|
|
else:
|
|
losses = detector.forward(imgs, img_metas)
|
|
assert isinstance(losses, dict)
|
|
|
|
# Test forward test
|
|
with torch.no_grad():
|
|
img_list = [g[None, :] for g in imgs]
|
|
batch_results = []
|
|
for one_img, one_meta in zip(img_list, img_metas):
|
|
result = detector.forward([one_img], [[one_meta]],
|
|
return_loss=False)
|
|
batch_results.append(result)
|
|
|
|
# Test show_result
|
|
|
|
results = {'text': 'hello', 'score': 1.0}
|
|
img = np.random.rand(5, 5, 3)
|
|
detector.show_result(img, results)
|