mmocr/configs/textrecog/svtr/svtr-tiny_20e_st_mj.py

163 lines
4.2 KiB
Python

_base_ = [
'_base_svtr-tiny.py',
'../_base_/default_runtime.py',
'../_base_/datasets/mjsynth.py',
'../_base_/datasets/synthtext.py',
'../_base_/datasets/cute80.py',
'../_base_/datasets/iiit5k.py',
'../_base_/datasets/svt.py',
'../_base_/datasets/svtp.py',
'../_base_/datasets/icdar2013.py',
'../_base_/datasets/icdar2015.py',
'../_base_/schedules/schedule_adam_base.py',
]
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=20, val_interval=1)
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(
type='AdamW',
lr=5 / (10**4) * 2048 / 2048,
betas=(0.9, 0.99),
eps=8e-8,
weight_decay=0.05))
param_scheduler = [
dict(
type='LinearLR',
start_factor=0.5,
end_factor=1.,
end=2,
verbose=False,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=19,
begin=2,
end=20,
verbose=False,
convert_to_iter_based=True),
]
file_client_args = dict(backend='disk')
train_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
ignore_empty=True,
min_size=5),
dict(type='LoadOCRAnnotations', with_text=True),
dict(
type='RandomApply',
prob=0.4,
transforms=[
dict(type='TextRecogGeneralAug', ),
],
),
dict(
type='RandomApply',
prob=0.4,
transforms=[
dict(type='CropHeight', ),
],
),
dict(
type='ConditionApply',
condition='min(results["img_shape"])>10',
true_transforms=dict(
type='RandomApply',
prob=0.4,
transforms=[
dict(
type='TorchVisionWrapper',
op='GaussianBlur',
kernel_size=5,
sigma=1,
),
],
)),
dict(
type='RandomApply',
prob=0.4,
transforms=[
dict(
type='TorchVisionWrapper',
op='ColorJitter',
brightness=0.5,
saturation=0.5,
contrast=0.5,
hue=0.1),
]),
dict(
type='RandomApply',
prob=0.4,
transforms=[
dict(type='ImageContentJitter', ),
],
),
dict(
type='RandomApply',
prob=0.4,
transforms=[
dict(
type='ImgAugWrapper',
args=[dict(cls='AdditiveGaussianNoise', scale=0.1**0.5)]),
],
),
dict(
type='RandomApply',
prob=0.4,
transforms=[
dict(type='ReversePixels', ),
],
),
dict(type='Resize', scale=(256, 64)),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
]
test_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='Resize', scale=(256, 64)),
dict(type='LoadOCRAnnotations', with_text=True),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
]
# dataset settings
train_list = [_base_.mjsynth_textrecog_test, _base_.synthtext_textrecog_train]
test_list = [
_base_.cute80_textrecog_test, _base_.iiit5k_textrecog_test,
_base_.svt_textrecog_test, _base_.svtp_textrecog_test,
_base_.icdar2013_textrecog_test, _base_.icdar2015_textrecog_test
]
val_evaluator = dict(
dataset_prefixes=['CUTE80', 'IIIT5K', 'SVT', 'SVTP', 'IC13', 'IC15'])
test_evaluator = val_evaluator
train_dataloader = dict(
batch_size=512,
num_workers=24,
persistent_workers=True,
pin_memory=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
val_dataloader = dict(
batch_size=128,
num_workers=8,
persistent_workers=True,
pin_memory=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
test_dataloader = val_dataloader