Jianquan Ye 061d353b2a
[Model] Add MASTER (#807)
* fix #794: add MASTER

* fix conflict add MASTER

* fix conflict add MASTER

* fix conflict add MASTER

* fix conflict add MASTER

* fix conflict add MASTER

* fix conflict add MASTER

* fix conflict add MASTER

* Fix linting

* after git rebase main

* after git rebase main

* fix conflict add MASTER

* fix conflict add MASTER

* after git rebase main

* fix conflict add MASTER

* fix conflict add MASTER

* fix conflict add MASTER

* after git rebase main

* add GCAModule to plugins

* coexist master and master_old

* fix merge mmocr 0.5.0 conflict

* fix lint error

* update

* [fix] remove remains in __init__

* [update] update code in review

* update readme for master

* Add docstr to MasterDecoder, refined MasterDecoder, remove MASTERLoss

* Unify the output length of MasterDecoder in train and test mode; add test for it, remove MasterLoss

* update readme

* update

* update metafile,README,demo/README,config,ocr.py

* Update mmocr/utils/ocr.py

* update

Co-authored-by: gaotongxiao <gaotongxiao@gmail.com>
Co-authored-by: Mountchicken <mountchicken@outlook.com>
2022-05-05 16:06:15 +08:00

62 lines
1.9 KiB
Python

label_convertor = dict(
type='AttnConvertor', dict_type='DICT90', with_unknown=True)
model = dict(
type='MASTER',
backbone=dict(
type='ResNet',
in_channels=3,
stem_channels=[64, 128],
block_cfgs=dict(
type='BasicBlock',
plugins=dict(
cfg=dict(
type='GCAModule',
ratio=0.0625,
headers=1,
pooling_type='att',
is_att_scale=False,
fusion_type='channel_add'),
position='after_conv2')),
arch_layers=[1, 2, 5, 3],
arch_channels=[256, 256, 512, 512],
strides=[1, 1, 1, 1],
plugins=[
dict(
cfg=dict(type='Maxpool2d', kernel_size=2, stride=(2, 2)),
stages=(True, True, False, False),
position='before_stage'),
dict(
cfg=dict(type='Maxpool2d', kernel_size=(2, 1), stride=(2, 1)),
stages=(False, False, True, False),
position='before_stage'),
dict(
cfg=dict(
type='ConvModule',
kernel_size=3,
stride=1,
padding=1,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU')),
stages=(True, True, True, True),
position='after_stage')
],
init_cfg=[
dict(type='Kaiming', layer='Conv2d'),
dict(type='Constant', val=1, layer='BatchNorm2d'),
]),
encoder=None,
decoder=dict(
type='MasterDecoder',
d_model=512,
n_head=8,
attn_drop=0.,
ffn_drop=0.,
d_inner=2048,
n_layers=3,
feat_pe_drop=0.2,
feat_size=6 * 40),
loss=dict(type='TFLoss', reduction='mean'),
label_convertor=label_convertor,
max_seq_len=30)