128 lines
4.0 KiB
Python

_base_ = [
'../../_base_/recog_datasets/mjsynth.py',
'../../_base_/recog_datasets/synthtext.py',
'../../_base_/recog_datasets/cute80.py',
'../../_base_/recog_datasets/iiit5k.py',
'../../_base_/recog_datasets/svt.py',
'../../_base_/recog_datasets/svtp.py',
'../../_base_/recog_datasets/icdar2013.py',
'../../_base_/recog_datasets/icdar2015.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_20e.py',
]
# dataset settings
train_list = [_base_.mj_rec_train, _base_.st_an_rec_train]
test_list = [
_base_.cute80_rec_test, _base_.iiit5k_rec_test, _base_.svt_rec_test,
_base_.svtp_rec_test, _base_.ic13_rec_test, _base_.ic15_rec_test
]
file_client_args = dict(backend='disk')
default_hooks = dict(logger=dict(type='LoggerHook', interval=100))
train_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
ignore_empty=True,
min_size=5),
dict(type='LoadOCRAnnotations', with_text=True),
dict(type='Resize', scale=(128, 32)),
dict(
type='RandomApply',
prob=0.5,
transforms=[
dict(
type='RandomChoice',
transforms=[
dict(
type='RandomRotate',
max_angle=15,
),
dict(
type='TorchVisionWrapper',
op='RandomAffine',
degrees=15,
translate=(0.3, 0.3),
scale=(0.5, 2.),
shear=(-45, 45),
),
dict(
type='TorchVisionWrapper',
op='RandomPerspective',
distortion_scale=0.5,
p=1,
),
])
],
),
dict(
type='RandomApply',
prob=0.25,
transforms=[
dict(type='PyramidRescale'),
dict(
type='mmdet.Albu',
transforms=[
dict(type='GaussNoise', var_limit=(20, 20), p=0.5),
dict(type='MotionBlur', blur_limit=6, p=0.5),
]),
]),
dict(
type='RandomApply',
prob=0.25,
transforms=[
dict(
type='TorchVisionWrapper',
op='ColorJitter',
brightness=0.5,
saturation=0.5,
contrast=0.5,
hue=0.1),
]),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
]
test_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='Resize', scale=(128, 32)),
# add loading annotation after ``Resize`` because ground truth
# does not need to do resize data transform
dict(type='LoadOCRAnnotations', with_text=True),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
]
train_dataloader = dict(
batch_size=192 * 4,
num_workers=32,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
test_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
val_dataloader = test_dataloader
val_evaluator = dict(
type='MultiDatasetsEvaluator',
metrics=[
dict(
type='WordMetric',
mode=['exact', 'ignore_case', 'ignore_case_symbol']),
dict(type='CharMetric')
],
datasets_prefix=['CUTE80', 'IIIT5K', 'SVT', 'SVTP', 'IC13', 'IC15'])
test_evaluator = val_evaluator
visualizer = dict(type='TextRecogLocalVisualizer', name='visualizer')