mirror of https://github.com/open-mmlab/mmocr.git
196 lines
5.7 KiB
Python
196 lines
5.7 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import os.path as osp
|
|
|
|
import mmcv
|
|
|
|
from mmocr.utils import dump_ocr_data
|
|
|
|
|
|
def collect_files(img_dir, gt_dir, split_info):
|
|
"""Collect all images and their corresponding groundtruth files.
|
|
|
|
Args:
|
|
img_dir (str): The image directory
|
|
gt_dir (str): The groundtruth directory
|
|
split_info (dict): The split information for train/val/test
|
|
|
|
Returns:
|
|
files (list): The list of tuples (img_file, groundtruth_file)
|
|
"""
|
|
assert isinstance(img_dir, str)
|
|
assert img_dir
|
|
assert isinstance(gt_dir, str)
|
|
assert gt_dir
|
|
assert isinstance(split_info, dict)
|
|
assert split_info
|
|
|
|
ann_list, imgs_list = [], []
|
|
for group in split_info:
|
|
for img in split_info[group]:
|
|
image_path = osp.join(img_dir, img)
|
|
anno_path = osp.join(gt_dir, 'groups', group,
|
|
img.replace('jpg', 'json'))
|
|
|
|
# Filtering out the missing images
|
|
if not osp.exists(image_path) or not osp.exists(anno_path):
|
|
continue
|
|
|
|
imgs_list.append(image_path)
|
|
ann_list.append(anno_path)
|
|
|
|
files = list(zip(imgs_list, ann_list))
|
|
assert len(files), f'No images found in {img_dir}'
|
|
print(f'Loaded {len(files)} images from {img_dir}')
|
|
|
|
return files
|
|
|
|
|
|
def collect_annotations(files, nproc=1):
|
|
"""Collect the annotation information.
|
|
|
|
Args:
|
|
files (list): The list of tuples (image_file, groundtruth_file)
|
|
nproc (int): The number of process to collect annotations
|
|
|
|
Returns:
|
|
images (list): The list of image information dicts
|
|
"""
|
|
assert isinstance(files, list)
|
|
assert isinstance(nproc, int)
|
|
|
|
if nproc > 1:
|
|
images = mmcv.track_parallel_progress(
|
|
load_img_info, files, nproc=nproc)
|
|
else:
|
|
images = mmcv.track_progress(load_img_info, files)
|
|
|
|
return images
|
|
|
|
|
|
def load_img_info(files):
|
|
"""Load the information of one image.
|
|
|
|
Args:
|
|
files (tuple): The tuple of (img_file, groundtruth_file)
|
|
|
|
Returns:
|
|
img_info (dict): The dict of the img and annotation information
|
|
"""
|
|
assert isinstance(files, tuple)
|
|
|
|
img_file, gt_file = files
|
|
assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split(
|
|
'.')[0]
|
|
# Read imgs while ignoring orientations
|
|
img = mmcv.imread(img_file, 'unchanged')
|
|
|
|
img_info = dict(
|
|
file_name=osp.join(osp.basename(img_file)),
|
|
height=img.shape[0],
|
|
width=img.shape[1],
|
|
segm_file=osp.join(osp.basename(gt_file)))
|
|
|
|
if osp.splitext(gt_file)[1] == '.json':
|
|
img_info = load_json_info(gt_file, img_info)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
return img_info
|
|
|
|
|
|
def load_json_info(gt_file, img_info):
|
|
"""Collect the annotation information.
|
|
|
|
Annotation Format
|
|
{
|
|
'textBBs': [{
|
|
'poly_points': [[435,1406], [466,1406], [466,1439], [435,1439]],
|
|
"type": "text",
|
|
"id": "t1",
|
|
}], ...
|
|
}
|
|
|
|
Some special characters are used in the transcription:
|
|
"«text»" indicates that "text" had a strikethrough
|
|
"¿" indicates the transcriber could not read a character
|
|
"§" indicates the whole line or word was illegible
|
|
"" (empty string) is if the field was blank
|
|
|
|
Args:
|
|
gt_file (str): The path to ground-truth
|
|
img_info (dict): The dict of the img and annotation information
|
|
|
|
Returns:
|
|
img_info (dict): The dict of the img and annotation information
|
|
"""
|
|
assert isinstance(gt_file, str)
|
|
assert isinstance(img_info, dict)
|
|
|
|
annotation = mmcv.load(gt_file)
|
|
anno_info = []
|
|
|
|
# 'textBBs' contains the printed texts of the table while 'fieldBBs'
|
|
# contains the text filled by human.
|
|
for box_type in ['textBBs', 'fieldBBs']:
|
|
for anno in annotation[box_type]:
|
|
# Skip blanks
|
|
if box_type == 'fieldBBs':
|
|
if anno['type'] == 'blank':
|
|
continue
|
|
|
|
xs, ys, segmentation = [], [], []
|
|
for p in anno['poly_points']:
|
|
xs.append(p[0])
|
|
ys.append(p[1])
|
|
segmentation.append(p[0])
|
|
segmentation.append(p[1])
|
|
x, y = max(0, min(xs)), max(0, min(ys))
|
|
w, h = max(xs) - x, max(ys) - y
|
|
bbox = [x, y, w, h]
|
|
|
|
anno = dict(
|
|
iscrowd=0,
|
|
category_id=1,
|
|
bbox=bbox,
|
|
area=w * h,
|
|
segmentation=[segmentation])
|
|
anno_info.append(anno)
|
|
|
|
img_info.update(anno_info=anno_info)
|
|
|
|
return img_info
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description='Generate training, val, and test set of NAF ')
|
|
parser.add_argument('root_path', help='Root dir path of NAF')
|
|
parser.add_argument(
|
|
'--nproc', default=1, type=int, help='Number of process')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
root_path = args.root_path
|
|
split_info = mmcv.load(
|
|
osp.join(root_path, 'annotations', 'train_valid_test_split.json'))
|
|
split_info['training'] = split_info.pop('train')
|
|
split_info['val'] = split_info.pop('valid')
|
|
for split in ['training', 'val', 'test']:
|
|
print(f'Processing {split} set...')
|
|
with mmcv.Timer(print_tmpl='It takes {}s to convert NAF annotation'):
|
|
files = collect_files(
|
|
osp.join(root_path, 'imgs'),
|
|
osp.join(root_path, 'annotations'), split_info[split])
|
|
image_infos = collect_annotations(files, nproc=args.nproc)
|
|
dump_ocr_data(image_infos,
|
|
osp.join(root_path, 'instances_' + split + '.json'),
|
|
'textdet')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|