mmocr/tools/dataset_converters/textrecog/cocotext_converter.py

190 lines
6.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import json
import math
import os.path as osp
from functools import partial
import mmcv
from mmocr.utils.fileio import list_to_file
def parse_args():
parser = argparse.ArgumentParser(
description='Generate training and validation set of COCO Text v2 ')
parser.add_argument('root_path', help='Root dir path of COCO Text v2')
parser.add_argument(
'--nproc', default=1, type=int, help='Number of processes')
parser.add_argument(
'--preserve-vertical',
help='Preserve samples containing vertical texts',
action='store_true')
parser.add_argument(
'--format',
default='jsonl',
help='Use jsonl or string to format annotations',
choices=['jsonl', 'txt'])
args = parser.parse_args()
return args
def process_img(args, src_image_root, dst_image_root, ignore_image_root,
preserve_vertical, split, format):
# Dirty hack for multi-processing
img_idx, img_info, anns = args
src_img = mmcv.imread(osp.join(src_image_root, img_info['file_name']))
labels = []
for ann_idx, ann in enumerate(anns):
text_label = ann['utf8_string']
# Ignore illegible or non-English words
if ann['language'] == 'not english':
continue
if ann['legibility'] == 'illegible':
continue
x, y, w, h = ann['bbox']
x, y = max(0, math.floor(x)), max(0, math.floor(y))
w, h = math.ceil(w), math.ceil(h)
dst_img = src_img[y:y + h, x:x + w]
dst_img_name = f'img_{img_idx}_{ann_idx}.jpg'
if not preserve_vertical and h / w > 2 and split == 'train':
dst_img_path = osp.join(ignore_image_root, dst_img_name)
mmcv.imwrite(dst_img, dst_img_path)
continue
dst_img_path = osp.join(dst_image_root, dst_img_name)
mmcv.imwrite(dst_img, dst_img_path)
if format == 'txt':
labels.append(f'{osp.basename(dst_image_root)}/{dst_img_name}'
f' {text_label}')
elif format == 'jsonl':
labels.append(
json.dumps({
'filename':
f'{osp.basename(dst_image_root)}/{dst_img_name}',
'text': text_label
}))
else:
raise NotImplementedError
return labels
def convert_cocotext(root_path,
split,
preserve_vertical,
format,
nproc,
img_start_idx=0):
"""Collect the annotation information and crop the images.
The annotation format is as the following:
{
'anns':{
'45346':{
'mask': [468.9,286.7,468.9,295.2,493.0,295.8,493.0,287.2],
'class': 'machine printed',
'bbox': [468.9, 286.7, 24.1, 9.1], # x, y, w, h
'image_id': 217925,
'id': 45346,
'language': 'english', # 'english' or 'not english'
'area': 206.06,
'utf8_string': 'New',
'legibility': 'legible', # 'legible' or 'illegible'
},
...
}
'imgs':{
'540965':{
'id': 540965,
'set': 'train', # 'train' or 'val'
'width': 640,
'height': 360,
'file_name': 'COCO_train2014_000000540965.jpg'
},
...
}
'imgToAnns':{
'540965': [],
'260932': [63993, 63994, 63995, 63996, 63997, 63998, 63999],
...
}
}
Args:
root_path (str): Root path to the dataset
split (str): Dataset split, which should be 'train' or 'val'
preserve_vertical (bool): Whether to preserve vertical texts
format (str): Annotation format, should be either 'jsonl' or 'txt'
nproc (int): Number of processes
img_start_idx (int): Index of start image
Returns:
img_info (dict): The dict of the img and annotation information
"""
annotation_path = osp.join(root_path, 'annotations/cocotext.v2.json')
if not osp.exists(annotation_path):
raise Exception(
f'{annotation_path} not exists, please check and try again.')
annotation = mmcv.load(annotation_path)
# outputs
dst_label_file = osp.join(root_path, f'{split}_label.{format}')
dst_image_root = osp.join(root_path, 'crops', split)
ignore_image_root = osp.join(root_path, 'ignores', split)
src_image_root = osp.join(root_path, 'imgs')
mmcv.mkdir_or_exist(dst_image_root)
mmcv.mkdir_or_exist(ignore_image_root)
process_img_with_path = partial(
process_img,
src_image_root=src_image_root,
dst_image_root=dst_image_root,
ignore_image_root=ignore_image_root,
preserve_vertical=preserve_vertical,
split=split,
format=format)
tasks = []
for img_idx, img_info in enumerate(annotation['imgs'].values()):
if img_info['set'] == split:
ann_ids = annotation['imgToAnns'][str(img_info['id'])]
anns = [annotation['anns'][str(ann_id)] for ann_id in ann_ids]
tasks.append((img_idx + img_start_idx, img_info, anns))
labels_list = mmcv.track_parallel_progress(
process_img_with_path, tasks, keep_order=True, nproc=nproc)
final_labels = []
for label_list in labels_list:
final_labels += label_list
list_to_file(dst_label_file, final_labels)
return len(annotation['imgs'])
def main():
args = parse_args()
root_path = args.root_path
print('Processing training set...')
num_train_imgs = convert_cocotext(
root_path=root_path,
split='train',
preserve_vertical=args.preserve_vertical,
format=args.format,
nproc=args.nproc)
print('Processing validation set...')
convert_cocotext(
root_path=root_path,
split='val',
preserve_vertical=args.preserve_vertical,
format=args.format,
nproc=args.nproc,
img_start_idx=num_train_imgs)
print('Finish')
if __name__ == '__main__':
main()