mirror of https://github.com/open-mmlab/mmocr.git
274 lines
8.8 KiB
Python
274 lines
8.8 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import json
|
|
import math
|
|
import os
|
|
import os.path as osp
|
|
import xml.etree.ElementTree as ET
|
|
|
|
import mmcv
|
|
|
|
from mmocr.utils.fileio import list_to_file
|
|
from mmocr.utils.img_utils import crop_img
|
|
|
|
|
|
def collect_files(img_dir, gt_dir, ratio):
|
|
"""Collect all images and their corresponding groundtruth files.
|
|
|
|
Args:
|
|
img_dir (str): The image directory
|
|
gt_dir (str): The groundtruth directory
|
|
ratio (float): Split ratio for val set
|
|
|
|
Returns:
|
|
files (list): The list of tuples (img_file, groundtruth_file)
|
|
"""
|
|
assert isinstance(img_dir, str)
|
|
assert img_dir
|
|
assert isinstance(gt_dir, str)
|
|
assert gt_dir
|
|
assert isinstance(ratio, float)
|
|
assert ratio < 1.0, 'val_ratio should be a float between 0.0 to 1.0'
|
|
|
|
ann_list, imgs_list = [], []
|
|
for img_file in os.listdir(img_dir):
|
|
ann_list.append(osp.join(gt_dir, img_file.split('.')[0] + '.xml'))
|
|
imgs_list.append(osp.join(img_dir, img_file))
|
|
|
|
all_files = list(zip(sorted(imgs_list), sorted(ann_list)))
|
|
assert len(all_files), f'No images found in {img_dir}'
|
|
print(f'Loaded {len(all_files)} images from {img_dir}')
|
|
|
|
trn_files, val_files = [], []
|
|
if ratio > 0:
|
|
for i, file in enumerate(all_files):
|
|
if i % math.floor(1 / ratio):
|
|
trn_files.append(file)
|
|
else:
|
|
val_files.append(file)
|
|
else:
|
|
trn_files, val_files = all_files, []
|
|
|
|
print(f'training #{len(trn_files)}, val #{len(val_files)}')
|
|
|
|
return trn_files, val_files
|
|
|
|
|
|
def collect_annotations(files, nproc=1):
|
|
"""Collect the annotation information.
|
|
|
|
Args:
|
|
files (list): The list of tuples (image_file, groundtruth_file)
|
|
nproc (int): The number of process to collect annotations
|
|
|
|
Returns:
|
|
images (list): The list of image information dicts
|
|
"""
|
|
assert isinstance(files, list)
|
|
assert isinstance(nproc, int)
|
|
|
|
if nproc > 1:
|
|
images = mmcv.track_parallel_progress(
|
|
load_img_info, files, nproc=nproc)
|
|
else:
|
|
images = mmcv.track_progress(load_img_info, files)
|
|
|
|
return images
|
|
|
|
|
|
def load_img_info(files):
|
|
"""Load the information of one image.
|
|
|
|
Args:
|
|
files (tuple): The tuple of (img_file, groundtruth_file)
|
|
|
|
Returns:
|
|
img_info (dict): The dict of the img and annotation information
|
|
"""
|
|
assert isinstance(files, tuple)
|
|
|
|
img_file, gt_file = files
|
|
assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split(
|
|
'.')[0]
|
|
# read imgs while ignoring orientations
|
|
img = mmcv.imread(img_file, 'unchanged')
|
|
|
|
img_info = dict(
|
|
file_name=osp.join(osp.basename(img_file)),
|
|
height=img.shape[0],
|
|
width=img.shape[1],
|
|
segm_file=osp.join(osp.basename(gt_file)))
|
|
|
|
if osp.splitext(gt_file)[1] == '.xml':
|
|
img_info = load_xml_info(gt_file, img_info)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
return img_info
|
|
|
|
|
|
def load_xml_info(gt_file, img_info):
|
|
"""Collect the annotation information.
|
|
|
|
Annotation Format
|
|
<image>
|
|
<imageName>DSC02306.JPG</imageName>
|
|
<resolution x="640" y="480" />
|
|
<words>
|
|
<word x="61" y="140" width="566" height="107">
|
|
<character x="61" y="147" width="75" height="94" char="C" />
|
|
<character x="173" y="147" width="77" height="93" char="L" />
|
|
<character x="251" y="146" width="83" height="96" char="A" />
|
|
<character x="335" y="146" width="75" height="97" char="V" />
|
|
<character x="409" y="140" width="52" height="105" char="I" />
|
|
<character x="464" y="147" width="76" height="96" char="T" />
|
|
<character x="538" y="154" width="89" height="93" char="A" />
|
|
</word>
|
|
</words>
|
|
<illumination>no</illumination>
|
|
<difficulty>2</difficulty>
|
|
<tag>
|
|
</tag>
|
|
</image>
|
|
|
|
Args:
|
|
gt_file (str): The path to ground-truth
|
|
img_info (dict): The dict of the img and annotation information
|
|
|
|
Returns:
|
|
img_info (dict): The dict of the img and annotation information
|
|
"""
|
|
|
|
obj = ET.parse(gt_file)
|
|
root = obj.getroot()
|
|
anno_info = []
|
|
for word in root.iter('word'):
|
|
x, y = max(0, int(word.attrib['x'])), max(0, int(word.attrib['y']))
|
|
w, h = int(word.attrib['width']), int(word.attrib['height'])
|
|
bbox = [x, y, x + w, y, x + w, y + h, x, y + h]
|
|
chars = []
|
|
for character in word.iter('character'):
|
|
chars.append(character.attrib['char'])
|
|
word = ''.join(chars)
|
|
if len(word) == 0:
|
|
continue
|
|
anno = dict(bbox=bbox, word=word)
|
|
anno_info.append(anno)
|
|
|
|
img_info.update(anno_info=anno_info)
|
|
|
|
return img_info
|
|
|
|
|
|
def generate_ann(root_path, split, image_infos, preserve_vertical, format):
|
|
"""Generate cropped annotations and label txt file.
|
|
|
|
Args:
|
|
root_path (str): The root path of the dataset
|
|
split (str): The split of dataset. Namely: training or test
|
|
image_infos (list[dict]): A list of dicts of the img and
|
|
annotation information
|
|
preserve_vertical (bool): Whether to preserve vertical texts
|
|
format (str): Annotation format, should be either 'txt' or 'jsonl'
|
|
"""
|
|
|
|
dst_image_root = osp.join(root_path, 'crops', split)
|
|
ignore_image_root = osp.join(root_path, 'ignores', split)
|
|
if split == 'training':
|
|
dst_label_file = osp.join(root_path, f'train_label.{format}')
|
|
elif split == 'val':
|
|
dst_label_file = osp.join(root_path, f'val_label.{format}')
|
|
mmcv.mkdir_or_exist(dst_image_root)
|
|
mmcv.mkdir_or_exist(ignore_image_root)
|
|
|
|
lines = []
|
|
for image_info in image_infos:
|
|
index = 1
|
|
src_img_path = osp.join(root_path, 'imgs', image_info['file_name'])
|
|
image = mmcv.imread(src_img_path)
|
|
src_img_root = image_info['file_name'].split('.')[0]
|
|
|
|
for anno in image_info['anno_info']:
|
|
word = anno['word']
|
|
dst_img = crop_img(image, anno['bbox'], 0, 0)
|
|
h, w, _ = dst_img.shape
|
|
|
|
dst_img_name = f'{src_img_root}_{index}.png'
|
|
index += 1
|
|
# Skip invalid annotations
|
|
if min(dst_img.shape) == 0:
|
|
continue
|
|
# Filter out vertical texts
|
|
if not preserve_vertical and h / w > 2:
|
|
dst_img_path = osp.join(ignore_image_root, dst_img_name)
|
|
mmcv.imwrite(dst_img, dst_img_path)
|
|
continue
|
|
|
|
dst_img_path = osp.join(dst_image_root, dst_img_name)
|
|
mmcv.imwrite(dst_img, dst_img_path)
|
|
if format == 'txt':
|
|
lines.append(f'{osp.basename(dst_image_root)}/{dst_img_name} '
|
|
f'{word}')
|
|
elif format == 'jsonl':
|
|
lines.append(
|
|
json.dumps(
|
|
{
|
|
'filename':
|
|
f'{osp.basename(dst_image_root)}/{dst_img_name}',
|
|
'text': word
|
|
},
|
|
ensure_ascii=False))
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
list_to_file(dst_label_file, lines)
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description='Generate training and val set of KAIST ')
|
|
parser.add_argument('root_path', help='Root dir path of KAIST')
|
|
parser.add_argument(
|
|
'--val-ratio', help='Split ratio for val set', default=0.0, type=float)
|
|
parser.add_argument(
|
|
'--preserve-vertical',
|
|
help='Preserve samples containing vertical texts',
|
|
action='store_true')
|
|
parser.add_argument(
|
|
'--format',
|
|
default='jsonl',
|
|
help='Use jsonl or string to format annotations',
|
|
choices=['jsonl', 'txt'])
|
|
parser.add_argument(
|
|
'--nproc', default=1, type=int, help='Number of process')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
root_path = args.root_path
|
|
ratio = args.val_ratio
|
|
|
|
trn_files, val_files = collect_files(
|
|
osp.join(root_path, 'imgs'), osp.join(root_path, 'annotations'), ratio)
|
|
|
|
# Train set
|
|
trn_infos = collect_annotations(trn_files, nproc=args.nproc)
|
|
with mmcv.Timer(
|
|
print_tmpl='It takes {}s to convert KAIST Training annotation'):
|
|
generate_ann(root_path, 'training', trn_infos, args.preserve_vertical,
|
|
args.format)
|
|
|
|
# Val set
|
|
if len(val_files) > 0:
|
|
val_infos = collect_annotations(val_files, nproc=args.nproc)
|
|
with mmcv.Timer(
|
|
print_tmpl='It takes {}s to convert KAIST Val annotation'):
|
|
generate_ann(root_path, 'val', val_infos, args.preserve_vertical,
|
|
args.format)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|