mirror of https://github.com/open-mmlab/mmocr.git
65 lines
2.3 KiB
Python
65 lines
2.3 KiB
Python
data_root = 'data/iiit5k'
|
|
cache_path = 'data/cache'
|
|
|
|
train_preparer = dict(
|
|
obtainer=dict(
|
|
type='NaiveDataObtainer',
|
|
cache_path=cache_path,
|
|
files=[
|
|
dict(
|
|
url='http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/'
|
|
'IIIT5K-Word_V3.0.tar.gz',
|
|
save_name='IIIT5K.tar.gz',
|
|
md5='56781bc327d22066aa1c239ee788fd46',
|
|
content=['image'],
|
|
mapping=[['IIIT5K/IIIT5K/train', 'textrecog_imgs/train']]),
|
|
dict(
|
|
url='https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/'
|
|
'train_label.txt',
|
|
save_name='iiit5k_train.txt',
|
|
md5='beee914aaf3ec5794622b843d743c5a6',
|
|
content=['annotation'],
|
|
mapping=[['iiit5k_train.txt', 'annotations/train.txt']])
|
|
]),
|
|
gatherer=dict(type='MonoGatherer', ann_name='train.txt'),
|
|
parser=dict(
|
|
type='ICDARTxtTextRecogAnnParser',
|
|
encoding='utf-8',
|
|
separator=' ',
|
|
format='img text'),
|
|
packer=dict(type='TextRecogPacker'),
|
|
dumper=dict(type='JsonDumper'),
|
|
)
|
|
|
|
test_preparer = dict(
|
|
obtainer=dict(
|
|
type='NaiveDataObtainer',
|
|
cache_path=cache_path,
|
|
files=[
|
|
dict(
|
|
url='http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/'
|
|
'IIIT5K-Word_V3.0.tar.gz',
|
|
save_name='IIIT5K.tar.gz',
|
|
md5='56781bc327d22066aa1c239ee788fd46',
|
|
content=['image'],
|
|
mapping=[['IIIT5K/IIIT5K/test', 'textrecog_imgs/test']]),
|
|
dict(
|
|
url='https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/'
|
|
'test_label.txt',
|
|
save_name='iiit5k_test.txt',
|
|
md5='117bcd9b4245f61fa57bfb37361674b3',
|
|
content=['annotation'],
|
|
mapping=[['iiit5k_test.txt', 'annotations/test.txt']])
|
|
]),
|
|
gatherer=dict(type='MonoGatherer', ann_name='test.txt'),
|
|
parser=dict(
|
|
type='ICDARTxtTextRecogAnnParser',
|
|
encoding='utf-8',
|
|
separator=' ',
|
|
format='img text'),
|
|
packer=dict(type='TextRecogPacker'),
|
|
dumper=dict(type='JsonDumper'),
|
|
)
|
|
delete = ['annotations', 'IIIT5K']
|
|
config_generator = dict(type='TextRecogConfigGenerator')
|