mmocr/configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2...

77 lines
2.2 KiB
Python

_base_ = [
'psenet_r50_fpnf.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_600e.py',
]
model = {{_base_.model_quad}}
train_pipeline_icdar2015 = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadOCRAnnotations',
with_polygon=True,
with_bbox=True,
with_label=True),
dict(
type='TorchVisionWrapper',
op='ColorJitter',
brightness=32.0 / 255,
saturation=0.5),
dict(type='ShortScaleAspectJitter', short_size=736, scale_divisor=32),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='RandomRotate', max_angle=10),
dict(type='TextDetRandomCrop', target_size=(736, 736)),
dict(type='Pad', size=(736, 736)),
dict(
type='PackTextDetInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
]
test_pipeline_icdar2015 = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(type='Resize', scale=(2240, 2240), keep_ratio=True),
dict(
type='PackTextDetInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor',
'instances'))
]
dataset_type = 'OCRDataset'
data_root = 'data/icdar2015'
train_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_training.json',
data_prefix=dict(img_path='imgs/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=train_pipeline_icdar2015)
test_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_test.json',
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=test_pipeline_icdar2015)
train_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=False,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
val_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
test_dataloader = val_dataloader
val_evaluator = dict(type='HmeanIOUMetric')
test_evaluator = val_evaluator
visualizer = dict(type='TextDetLocalVisualizer', name='visualizer')