mirror of https://github.com/open-mmlab/mmocr.git
92 lines
3.1 KiB
Python
92 lines
3.1 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import os
|
|
import os.path as osp
|
|
|
|
from mmengine.config import Config, DictAction
|
|
from mmengine.runner import Runner
|
|
|
|
from mmocr.utils import register_all_modules
|
|
|
|
|
|
# TODO: support fuse_conv_bn, visualization, and format_only
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description='Test (and eval) a model')
|
|
parser.add_argument('config', help='Test config file path')
|
|
parser.add_argument('checkpoint', help='Checkpoint file')
|
|
parser.add_argument(
|
|
'--work-dir',
|
|
help='The directory to save the file containing evaluation metrics')
|
|
parser.add_argument(
|
|
'--save-preds',
|
|
action='store_true',
|
|
help='Dump predictions to a pickle file for offline evaluation')
|
|
parser.add_argument(
|
|
'--cfg-options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help='Override some settings in the used config, the key-value pair '
|
|
'in xxx=yyy format will be merged into config file. If the value to '
|
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
|
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
|
'Note that the quotation marks are necessary and that no white space '
|
|
'is allowed.')
|
|
parser.add_argument(
|
|
'--launcher',
|
|
choices=['none', 'pytorch', 'slurm', 'mpi'],
|
|
default='none',
|
|
help='Job launcher')
|
|
parser.add_argument('--local_rank', type=int, default=0)
|
|
args = parser.parse_args()
|
|
if 'LOCAL_RANK' not in os.environ:
|
|
os.environ['LOCAL_RANK'] = str(args.local_rank)
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
# register all modules in mmocr into the registries
|
|
# do not init the default scope here because it will be init in the runner
|
|
register_all_modules(init_default_scope=False)
|
|
|
|
# load config
|
|
cfg = Config.fromfile(args.config)
|
|
cfg.launcher = args.launcher
|
|
if args.cfg_options is not None:
|
|
cfg.merge_from_dict(args.cfg_options)
|
|
|
|
# work_dir is determined in this priority: CLI > segment in file > filename
|
|
if args.work_dir is not None:
|
|
# update configs according to CLI args if args.work_dir is not None
|
|
cfg.work_dir = args.work_dir
|
|
elif cfg.get('work_dir', None) is None:
|
|
# use config filename as default work_dir if cfg.work_dir is None
|
|
cfg.work_dir = osp.join('./work_dirs',
|
|
osp.splitext(osp.basename(args.config))[0])
|
|
|
|
cfg.load_from = args.checkpoint
|
|
|
|
# save predictions
|
|
if args.save_preds:
|
|
dump_metric = dict(
|
|
type='DumpResults',
|
|
out_file_path=osp.join(
|
|
cfg.work_dir,
|
|
f'{osp.basename(args.checkpoint)}_predictions.pkl'))
|
|
if isinstance(cfg.test_evaluator, (list, tuple)):
|
|
cfg.test_evaluator = list(cfg.test_evaluator)
|
|
cfg.test_evaluator.append(dump_metric)
|
|
else:
|
|
cfg.test_evaluator = [cfg.test_evaluator, dump_metric]
|
|
|
|
# build the runner from config
|
|
runner = Runner.from_cfg(cfg)
|
|
|
|
# start testing
|
|
runner.test()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|