mmocr/tools/test.py

92 lines
3.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
from mmengine.config import Config, DictAction
from mmengine.runner import Runner
from mmocr.utils import register_all_modules
# TODO: support fuse_conv_bn, visualization, and format_only
def parse_args():
parser = argparse.ArgumentParser(description='Test (and eval) a model')
parser.add_argument('config', help='Test config file path')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument(
'--work-dir',
help='The directory to save the file containing evaluation metrics')
parser.add_argument(
'--save-preds',
action='store_true',
help='Dump predictions to a pickle file for offline evaluation')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='Override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='Job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
# register all modules in mmocr into the registries
# do not init the default scope here because it will be init in the runner
register_all_modules(init_default_scope=False)
# load config
cfg = Config.fromfile(args.config)
cfg.launcher = args.launcher
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
cfg.load_from = args.checkpoint
# save predictions
if args.save_preds:
dump_metric = dict(
type='DumpResults',
out_file_path=osp.join(
cfg.work_dir,
f'{osp.basename(args.checkpoint)}_predictions.pkl'))
if isinstance(cfg.test_evaluator, (list, tuple)):
cfg.test_evaluator = list(cfg.test_evaluator)
cfg.test_evaluator.append(dump_metric)
else:
cfg.test_evaluator = [cfg.test_evaluator, dump_metric]
# build the runner from config
runner = Runner.from_cfg(cfg)
# start testing
runner.test()
if __name__ == '__main__':
main()