mmocr/tests/test_models/test_ocr_backbone.py

50 lines
1.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmocr.models.textrecog.backbones import (ResNet31OCR, ShallowCNN,
VeryDeepVgg)
def test_resnet31_ocr_backbone():
"""Test resnet backbone."""
with pytest.raises(AssertionError):
ResNet31OCR(2.5)
with pytest.raises(AssertionError):
ResNet31OCR(3, layers=5)
with pytest.raises(AssertionError):
ResNet31OCR(3, channels=5)
# Test ResNet18 forward
model = ResNet31OCR()
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 32, 160)
feat = model(imgs)
assert feat.shape == torch.Size([1, 512, 4, 40])
def test_vgg_deep_vgg_ocr_backbone():
model = VeryDeepVgg()
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 32, 160)
feats = model(imgs)
assert feats.shape == torch.Size([1, 512, 1, 41])
def test_shallow_cnn_ocr_backbone():
model = ShallowCNN()
model.init_weights()
model.train()
imgs = torch.randn(1, 1, 32, 100)
feat = model(imgs)
assert feat.shape == torch.Size([1, 512, 8, 25])