7.3 KiB
安装
环境依赖
- Linux | Windows | macOS
- Python 3.7
- PyTorch 1.6 或更高版本
- torchvision 0.7.0
- CUDA 10.1
- NCCL 2
- GCC 5.4.0 或更高版本
准备环境
如果你已经在本地安装了 PyTorch,请直接跳转到[安装步骤](#安装步骤)。
第一步 下载并安装 Miniconda.
第二步 创建并激活一个 conda 环境:
conda create --name openmmlab python=3.8 -y
conda activate openmmlab
第三步 依照官方指南,安装 PyTorch。
在 GPU 平台上:
conda install pytorch torchvision -c pytorch
在 CPU 平台上:
conda install pytorch torchvision cpuonly -c pytorch
安装步骤
我们建议大多数用户采用我们的推荐方式安装 MMOCR。倘若你需要更灵活的安装过程,则可以参考自定义安装一节。
推荐步骤
第一步 使用 MIM 安装 MMEngine and MMCV.
pip install -U openmim
mim install mmengine
mim install 'mmcv>=2.0.0rc1'
第二步 将 MMDetection 以依赖库的形式安装。
pip install 'mmdet>=3.0.0rc0'
第三步 安装 MMOCR.
情况1: 若你需要直接运行 MMOCR 或在其基础上进行开发,则通过源码安装:
git clone https://github.com/open-mmlab/mmocr.git
cd mmocr
git checkout 1.x
pip install -r requirements.txt
pip install -v -e .
# "-v" 会让安装过程产生更详细的输出
# "-e" 会以可编辑的方式安装该代码库,你对该代码库所作的任何更改都会立即生效
情况2:如果你将 MMOCR 作为一个外置依赖库使用,通过 pip 安装即可:
pip install 'mmocr>=1.0.0rc0'
第四步(可选) 如果你需要使用与 albumentations
有关的变换,比如 ABINet 数据流水线中的 Albu
,请使用以下命令安装依赖:
# 若 MMOCR 通过源码安装
pip install -r requirements/albu.txt
# 若 MMOCR 通过 pip 安装
pip install albumentations>=1.1.0 --no-binary qudida,albumentations
我们建议在安装 `albumentations` 之后检查当前环境,确保 `opencv-python` 和 `opencv-python-headless` 没有同时被安装,否则有可能会产生一些无法预知的错误。如果它们不巧同时存在于环境当中,请卸载 `opencv-python-headless` 以确保 MMOCR 的可视化工具可以正常运行。
查看 [`albumentations` 的官方文档](https://albumentations.ai/docs/getting_started/installation/#note-on-opencv-dependencies)以获知详情。
检验
根据安装方式的不同,我们提供了验证安装正确性的方法。若 MMOCR 的安装无误,你在这一节完成后应当能看到以图片和文字形式表示的识别结果,示意如下:

# 识别结果
{'rec_texts': ['cbanke', 'docece', 'sroumats', 'chounsonse', 'doceca', 'c', '', 'sond', 'abrandso', 'sretane', '1', 'tosl', 'roundi', 'slen', 'yet', 'ally', 's', 'sue', 'salle', 'v'], 'rec_scores': [...], 'det_polygons': [...], 'det_scores': tensor([...])}
在 MMOCR 的目录运行以下命令:
python mmocr/ocr.py --det DB_r18 --recog CRNN demo/demo_text_ocr.jpg --show
也可以在 Python 解释器中运行以下代码:
from mmocr.utils.ocr import MMOCR
ocr = MMOCR(recog='CRNN', det='DB_r18')
ocr.readtext('demo_text_ocr.jpg', show=True)
自定义安装
CUDA 版本
安装 PyTorch 时,需要指定 CUDA 版本。如果您不清楚选择哪个,请遵循我们的建议:
- 对于 Ampere 架构的 NVIDIA GPU,例如 GeForce 30 series 以及 NVIDIA A100,CUDA 11 是必需的。
- 对于更早的 NVIDIA GPU,CUDA 11 是向前兼容的,但 CUDA 10.2 能够提供更好的兼容性,也更加轻量。
请确保你的 GPU 驱动版本满足最低的版本需求,参阅这张表。
如果按照我们的最佳实践进行安装,CUDA 运行时库就足够了,因为我们提供相关 CUDA 代码的预编译,你不需要进行本地编译。
但如果你希望从源码进行 MMCV 的编译,或是进行其他 CUDA 算子的开发,那么就必须安装完整的 CUDA 工具链,参见
[NVIDIA 官网](https://developer.nvidia.com/cuda-downloads),另外还需要确保该 CUDA 工具链的版本与 PyTorch 安装时
的配置相匹配(如用 `conda install` 安装 PyTorch 时指定的 cudatoolkit 版本)。
不使用 MIM 安装 MMCV
MMCV 包含 C++ 和 CUDA 扩展,因此其对 PyTorch 的依赖比较复杂。MIM 会自动解析这些 依赖,选择合适的 MMCV 预编译包,使安装更简单,但它并不是必需的。
要使用 pip 而不是 MIM 来安装 MMCV,请遵照 MMCV 安装指南。 它需要你用指定 url 的形式手动指定对应的 PyTorch 和 CUDA 版本。
举个例子,如下命令将会安装基于 PyTorch 1.10.x 和 CUDA 11.3 编译的 mmcv-full。
pip install 'mmcv>=2.0.0rc1' -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html
在 CPU 环境中安装
MMOCR 可以仅在 CPU 环境中安装,在 CPU 模式下,你可以完成训练(需要 MMCV 版本 >= 1.4.4)、测试和模型推理等所有操作。
在 CPU 模式下,MMCV 中的以下算子将不可用:
- Deformable Convolution
- Modulated Deformable Convolution
- ROI pooling
- SyncBatchNorm
如果你尝试使用用到了以上算子的模型进行训练、测试或推理,程序将会报错。以下为可能受到影响的模型列表:
算子 | 模型 |
---|---|
Deformable Convolution/Modulated Deformable Convolution | DBNet (r50dcnv2), DBNet++ (r50dcnv2), FCENet (r50dcnv2) |
SyncBatchNorm | PANet, PSENet |
通过 Docker 使用 MMOCR
我们提供了一个 Dockerfile 文件以建立 docker 镜像 。
# build an image with PyTorch 1.6, CUDA 10.1
docker build -t mmocr docker/
使用以下命令运行。
docker run --gpus all --shm-size=8g -it -v {实际数据目录}:/mmocr/data mmocr
对 MMCV 和 MMDetection 的版本依赖
为了确保代码实现的正确性,MMOCR 每个版本都有可能改变对 MMCV 和 MMDetection 版本的依赖。请根据以下表格确保版本之间的相互匹配。
MMOCR | MMCV | MMDetection |
---|---|---|
dev-1.x | 2.0.0rc1 <= mmcv | 3.0.0rc0 <= mmdet |
1.0.0rc0 | 2.0.0rc1 <= mmcv | 3.0.0rc0 <= mmdet |